BOOTCAMP Residential Space Conditioning & Water Heating

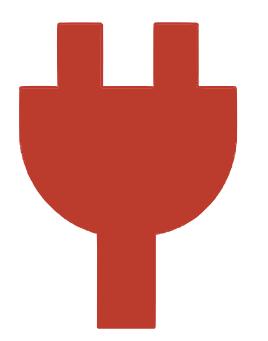
ELECTRIFY MY HOME

PRESENTED BY LARRY WATERS

Icebreaker

- 🕈 Name
- Experience in the trade
- Current Position
- What the electrification movement means to you ? (in 1 sentence)
- What you are hoping to learn

Class Rules


- Have fun!
- Keep an open mind
- Silence your cell phone
- Note questions for Q&A time

2

Course Overview

- This course will offer you an inside look at Residential Electrification in existing housing stock
- Offer information on WHY now is the time
- Introduce the principles of "Install Small" Right Sizing and "Good Electrification"
- Share the business opportunity that is presenting itself now

Why Are We Here?

- California is littered with poorly performing systems
- Customers with huge bills and little comfort
- There's a clear need to reduce pollution and emissions
- Challenges with electrical grid infrastructure
- Industry prioritizing sales over performance
- GIANT opportunities for differentiation

BOOTCAMP Explained

- No push-ups required
- Dozens of new concepts in a short period of time
 - Some will be repeated. This is BY DESIGN.
 - Based on building science and real-world application
- Our goal provide info and confidence to:
 - Speak confidently about the electrification transition
 - Incorporate new ideas into your business
 - Take a whole-house approach
 - Identify new products to install or advise

Who's This Dude?

1982 (UTI), with these tools
Certs along the way

2015 – only heat pumps

- 2020, foundedElectrify My Home

Larry Waters President, Electrify My Home

Day 1, Part 1: Electrification Basics 101

Upon completion of this part of the course, participants will be able to:

- Identify four rationales for electrifying existing homes
- Explain the heat pump heat transfer mechanism and how it produces more energy than it consumes
- Apply correct HVAC system sizing practices
- Describe three characteristics of the building enclosure that influence
 HVAC system design

First Terms

Electrification

The act of replacing gas-powered technologies with technologies powered by electricity

Good Electrification

The act of removing a gas appliance and replacing it with the best, most efficient electric solution

Decarbonization

The final result of electrification with respect to pollution mitigation

ENVIRONMENT, POLICY, CULTURE

- SEGMENT 1 -

Topics Covered in Segment 1

- Overview of old fuels and old technology; the impact of fossil fuels on the environment*
- Home improvement boom as it relates to the electrification boom*
- Policy and drivers of electrification: SB32, other legislation, timelines and benchmarks*
- Rising energy cost
- Energy production coal, gas, renewables
- The coming transition away from gas; why electrification is not going away
- Contractor's responsibility to provide options for electrification to all customers moving forward

* presented on video

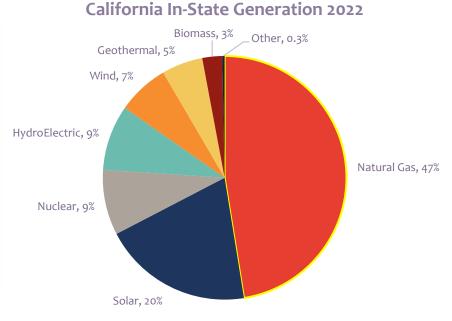
Intro Video

ENERGY PRODUCTION

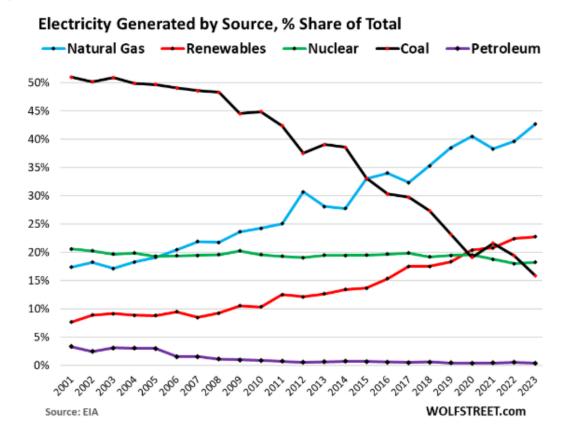
Gas- Nuclear- Renewable

What is Natural Gas?

- Main component naturally occurring methane, may also contain carbon dioxide, nitrogen, hydrogen, or helium
- Non-renewable energy for heating, cooking, and electricity generation
- Odorized for your safety


Natural Gas is a Greenhouse Gas

- Experts say natural gas is a significant driver of climate change
- Greenhouse gases trap heat and make the planet warmer
- Mainly from the combustion of fossil fuels -- coal, petroleum and natural gas
- According to the EPA, largest source comes from burning fossil fuels
- Methane (Gas leaks) have 80X warming power of Carbon Dioxide


Natural Gas - Electric Generation

All data from Energy Information Administration (EIA)

The Use of Natural Gas Was on the Rise, Now Being Offset by Solar and Wind

ELECTRIFY 18

Renewables Surpass Coal in U.S. Electricity Generation

Net generation of U.S. electricity, by source (in TWh)

- Coal - Natural gas* - Nuclear - Renewables - Others 2,500 2,000 1,701 1,500 913 1,000 829 772 500 0 '10 '12 '14 '16 '18 '20 '22 2008

statista

* and other gases Stored hydroelectric energy not deducted Source: U.S. Energy Information Administration

Nuclear Power "California's last nuclear plant too vital to shut down"

- Diablo Canyon only NPP left in California
- Was slated for decommissioning in 2025
- With electrification on the horizon this clean power source to vital to shut down.
- Provides 9% of power 24/7/365

Diablo Canyon

RENEWABLE ENERGY

Solar, Wind, Storage, Hydro

Los Angeles Times

California just hit 95% renewable energy. Will other states come along for the ride?

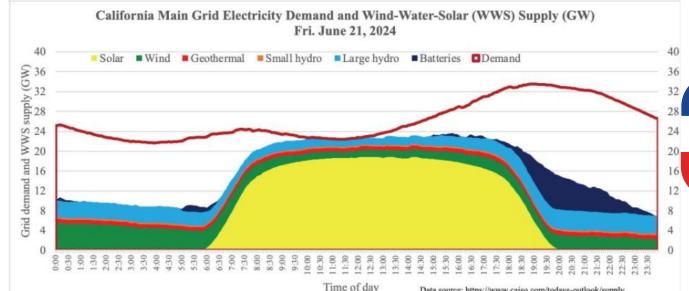
A short ride. "On Saturday just before 2:30 p.m., one of the world's largest economies came within a stone's throw of getting there."

"There are several caveats. For one thing, Saturday's 94.5% figure — was fleeting, lasting just four seconds. It was specific to the state's main power grid, which covers four-fifths of California"

California wants 100% renewable power. It just hit that milestone — briefly But we're making progress! peaked at 99.87% — marking i albeit a fleeting one"

"That continued for about an hour until demand slipped above production at 5:05 p.m."

It has happened

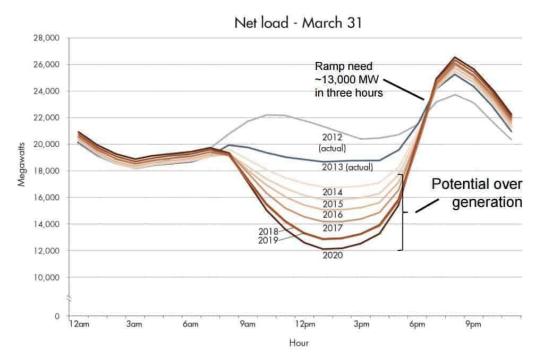

100 days of 100% #WindWaterSolar

Sun, July 28, California reached a milestone. The world's 5th-largest economy met 100% of @California ISO demand with >100% WWS for the 100th day since March 7. July 27 was day 99 (for 4.9 h)

 \mathbb{X}

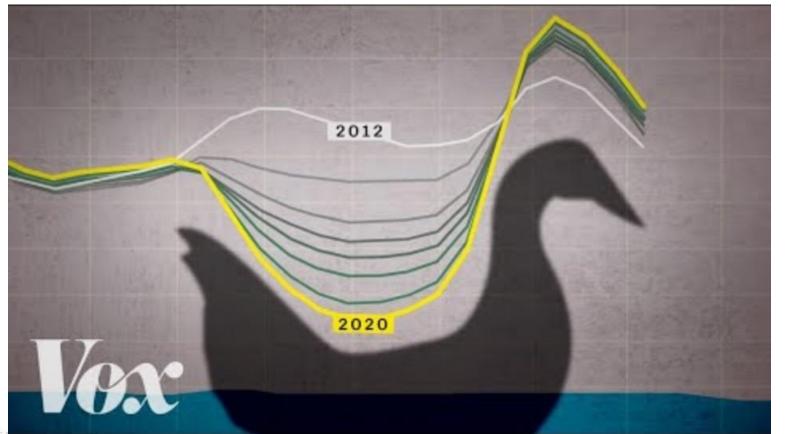
Wind, Water & Solar Is **Starting To Work!**

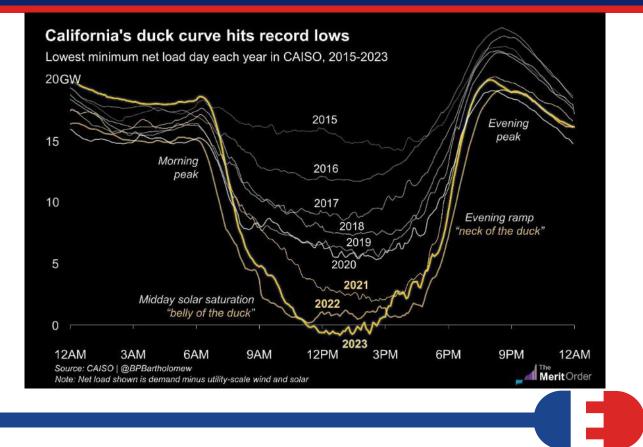
Data source: https://www.caiso.com/todays-outlook/supply


Strong summer winds helped

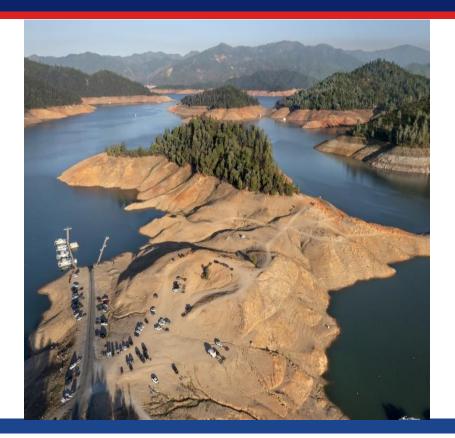
Energy Storage – Necessary & Gaining Traction

Duck Curve


- Net electricity demand, which is total system load minus solar generation
- The evening ramp (neck of the duck) is particularly important, as it demonstrates the significant ramp needed as the sun begins to set and solar goes offline


The Duck Curve energy load profile

2023 Duck Curve



- California now has over 500 high production turbines
- More than 7% of our energy
- Offshore wind to provide 13% by 2045
 - Major project outside
 Humboldt approved by CEC
- **†**13,920 Gigawatts

Hydro Takes a Hit with Drought

2023: 13.5% of total electric generation

2022: 10.4% of total electric generation

2020: Hydro in CA drops 44% from 2019

2017: 17.9% of total electric generation

2023: Storms Bring Much Needed Water For Hydro!

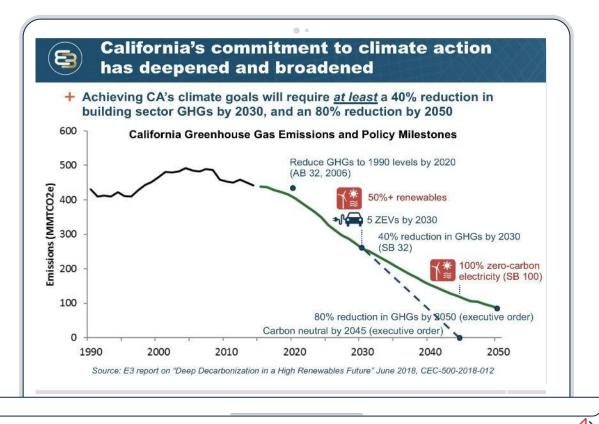
Good year for boating as well!

Level Base: MSL Full Pool: 900.00 feet Winter Pool: 640.00 feet Flood Pool: 901.00 feet Change Since Yesterday: † 0.52 Feet Level Controlled by: Dam Name: Oroville ()

POLICY DRIVERS & THE SHIFT

Spurring the Electrification Market

Policies & Decisions Leading to This Point Primary Drivers = Health, Air Quality, Climate Change



1963	1968	1970	1976	1988	1990	2005	2006	2016	2018	2018
US clean Air Act Amended 1965/67 1970/77	C.A.R.B. Board Forms	Clean Air Act shifts Fed's role allowing states to limit	A.Q.M.D formed across the state	CA Clean Air Act becomes Law	Clean Air Act amended & admin by US EPA	CA EO S-3-05 sets GHG emission targets	AB 32 CA Global Warming Solutions Act	SB 32 40% below 1990 levels by 2030	Executive Order B-55-18 takes a step further requires carbon neutrality by 2045	SB 1477 Technology & Equipment for Clean Heating (TECH) Initiative

California Decarbonization is happening

Transitioning away from gas

Electrification is NOT going away!

34

ELECTRIFY MY HOME The Long-Term Plan for Gas in California

Components of a gas transition

- Reduce barriers to building electrification
- Targeted building electrification pilots
- Avoid gas system expansion, reduce costs
- Targeted retirements of gas distribution system
- Accelerated depreciation
- Changes to rate design and cost allocation
- Exit fees for departing gas customers
- Other funds to manage the equity impacts
- Shut-down gas distribution system and replace any remaining gas-connected end-uses with electric or other fuels

27

1. Market

building

transformation of

electrification

2. Decrease gas distribution

3. Change in gas

4. Gas cost recovery

from electric rates or additional funds

5. Shut-down the gas distribution

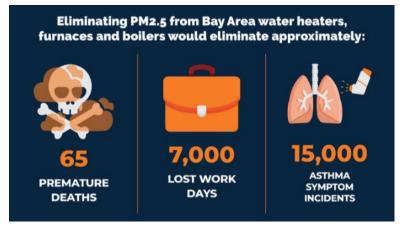
system

system costs

rate design

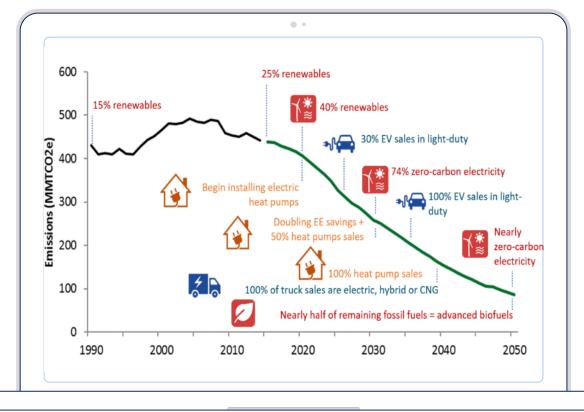
The Most Polluted Cities In America

Cities with the highest year-round levels of particle pollution in the U.S. (2017-2019)*


 * Values based on ALA's design value - calculated concentration of a pollutant based on the National Ambient Air Quality standard for PM2.5.
 Source: American Lung Association's State of the Air 2021

Gas Appliance Pollution

- "Appliance pollution in CA is responsible for 470 deaths and >\$5 billion in health impact costs per year in California" – RMI
- "Replacing all residential gas appliances in CA would prevent **354 premature deaths**, 596 acute cases of bronchitis, and 304 cases of chronic bronchitis"



Source: Gas Appliances and Smog: California's Hidden Air Pollution Problem. Sierra Club, SPUR, RMI. 2022.

Policy and Drivers of Electrification

10 million CA homes have gas as primary heating source

 All these homes are an opportunity for electrification

Renewables, EVs and heat pumps all have a phase-in date

ELECTRIFY MY HOME

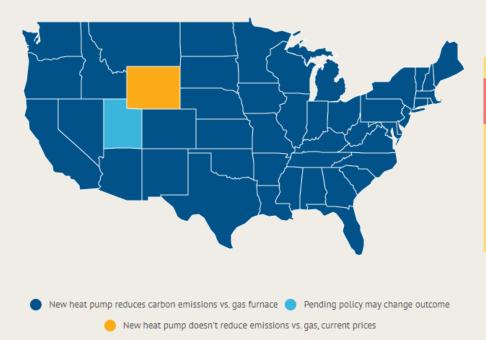
70+ Cities Have Adopted Building Codes to Phase Out Gas in New Buildings

1.Carlsbad 2.Berkeley 3.Windsor 4.San Luis Obispo 5.San Mateo 6.Santa Monica 7.Menlo Park 8.San Jose 9.Davis 10.Marin County 11.Mountain View 12.Morgan Hill 13.Palo Alto 14.Alameda 15.Milpitas 16.Santa Rosa 17.Pacifica 18.Mill Valley 19.Saratoga 20.Brisbane 21.Healdsburg 22.Los Gatos 23.Cupertino 24.San Francisco 25.Los Altos Hills

26. Campbell 27. San Mateo County 28. Richmond 29. Hayward 30. Santa Cruz 31. Burlingame 32. San Anselmo 33. Piedmont 34. Redwood Citv 35. East Palo Alto 36. Los Altos 37. Millbrae 38. Sunnvvale 39. Oiai 40. Oakland 41. Albany 42. San Carlos 43. Daly City 44. Petaluma 45. South San Francisco 46. Sacramento 47. Santa Barbara 48. Emervville 49. Fairfax 50. Encinitas

51. Santa Clara 52. Solana Beach 53.Santa Clara County 54.Contra Costa County 55.Half Moon Bav 56.Belmont 57.Hillsborough 58.Hercules 59.Pasadena 60.Martinez 61.San Bruno 62.Livermore 63.Portola Valley 64.Ventura County 65.Pleasanton 66 San Leandro 67.Glendale 68. Dublin 69.Corte Madera 70.Atherton 71. Riverside 72.San Rafael 73.Los Angeles 74.San Pablo 75. Agoura Hills 76.Carpinteria

BUILDINGS


Governor Newsom Sets Bold Clean Buildings Goals

It mobilizes the state to achieve the following goals:

- 6 million heat pumps in buildings by 2030, as recommended by the California Energy Commission,
- 3 million climate-ready and climate-friendly homes by 2030,
- 7 million climate-ready and climate-friendly homes by 2035 (half of all CA homes!),
- And with at least 50 percent of funding to meet these goals directed toward disadvantaged communities.

Why Electrification is a Cleaner Option

Emissions Impact by State—Heat Pumps vs. Gas Furnace (Continental United States)

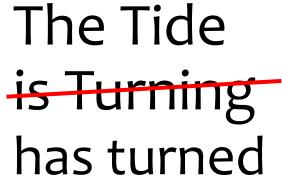
Source: https://rmi.org/its-time-to-incentivize-residential-heat-pumps/

Did you know?

98% of U.S. households would cut their carbon emissions by installing a heat pump today.

Source: Rewiring America study including fugitive gas emissions

Heat pumps are widening their lead on gas furnaces in the U.S. Units shipped per year


Heat pump sales

Gas furnace sales

CANARY MEDIA

Source: Air-Conditioning, Heating, and Refrigeration Institute, Canary Media • Note: 2024 figures are projections based on real data for January–November and an estimate of December shipments derived by averaging the previous 11 months' data.

With just this information, what's your responsibility to your customers?

- Will this change the way **you** present to your clients?
- Will this change your opinion on your own gas systems?
- Does it make sense to include an electric option every time?

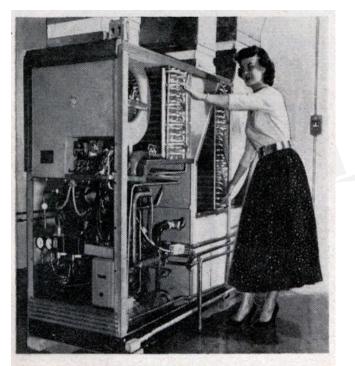
Break Time?

THE CLEAN ELECTRIC HOME SOLUTION

- SEGMENT 2 -

Topics Covered in Segment 2

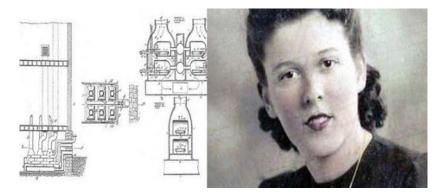
- Heat pump & furnace history and evolution
- Overview of heat pump types to be discussed in this course
- What is required for "Good Electrification"
- Technical terminology: SEER, EER, COP, HSPF, R-value, kilowatts and kilowatt-hours, electrical panels



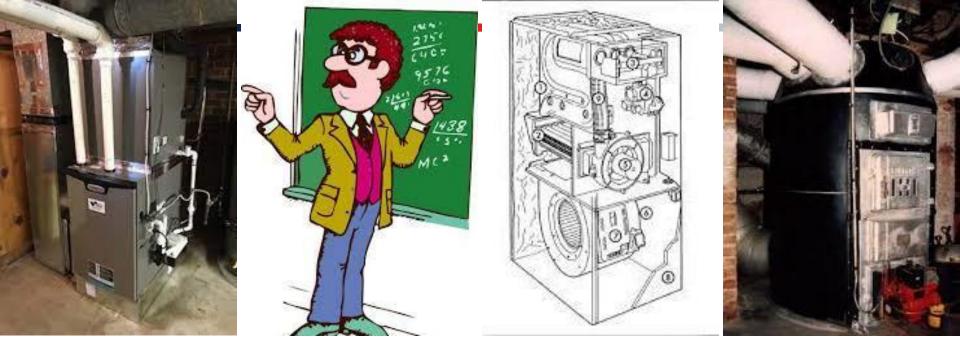
Everyone in this class has at least one heat pump in their house!

Quick Heat Pump History

- 1852 Lord Kelvin developed the idea
- 1855-1857 Peter von Rittinger built the first one
- 1950s GE proved anyone could have game changing heat pump technology, only requirement 50 extra square feet of space
- No COP or dB info on this monster.


A far cry from old-time heating methods is the G. E. packaged heat pump that either heats or cools house

Gas Furnace History: 150-year-old Technology Basically the Same


1855, Dr. Bunsen, German scientist figures out how to mix air with a flame to burn cleanly.

In **1919**, Alice Parker followed her dream to have a warm house and not have to keep a fire going.

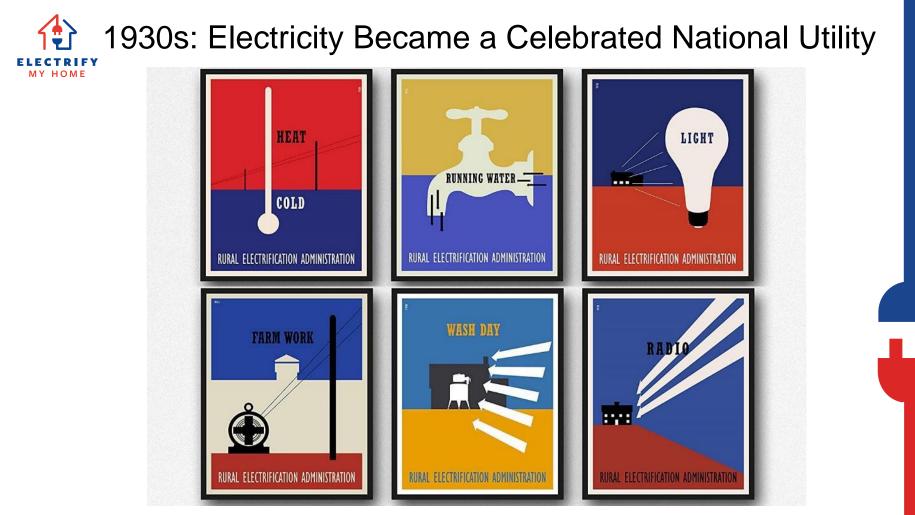
Information is unclear on how Alice actually got the furnace built.

How Much Has it Changed? 150-year-old Technology

Automobiles Have Evolved as Well

Starting to Make Sense?





First HPWH? 1940's Robert C Webber

• In the late 1940's, **Robert C. Webber**, a cellar inventor, was experimenting with his **deep freezer**. He dropped the temperature in the freezer and touched the outlet pipe and **almost burned his hand**. He realized **heat was being thrown away**, so he ran outlets from his freezer to his boilers and provided his family with **more hot water than they could use**! There was still wasted heat, so he piped hot water through a coil and used a small fan to distribute heat through the house to save coal. Mr. Webber was so pleased with the results that he decided to build a **full size heat pump** to generate heat for the entire home.

Slide courtesy of Redwood Energy

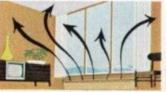
Live Better, Electrically – 1956

57

Total Electric Living is a clean break with the past

"We swapped a 'monster' for a new family room when we modernized with flameless electric home heating"

Lady, you'll just love flameless electric water heating (almost this much)


Only electricity offers flameless heating and cooling-and so many different types of equipment to choose from.

Heat pump heats in winter, cools in summer. One setting keeps any desired year-round temperature.

Electric furnace with air filter. Combines with cooling and humidity control for year-round comfort.

Electric baseboards save space, blend with room decor. Permit individual room temperatures.

Hot water system. Small boiler hangs on wall. Circulates hot water through baseboard units.

Radiant ceiling heating is invisible. Each room's temperature can be individually controlled.

[&]quot;Before we switched to electric heat, this measure took up a lot of living space." "Switching to electric heat gave us the space for a new family room. We love it."

Heat Pumps – Traditionally Disappointing in Cold Weather

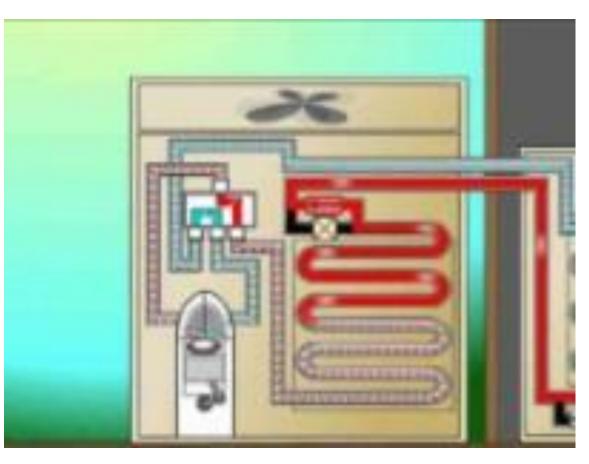
Common complaints:

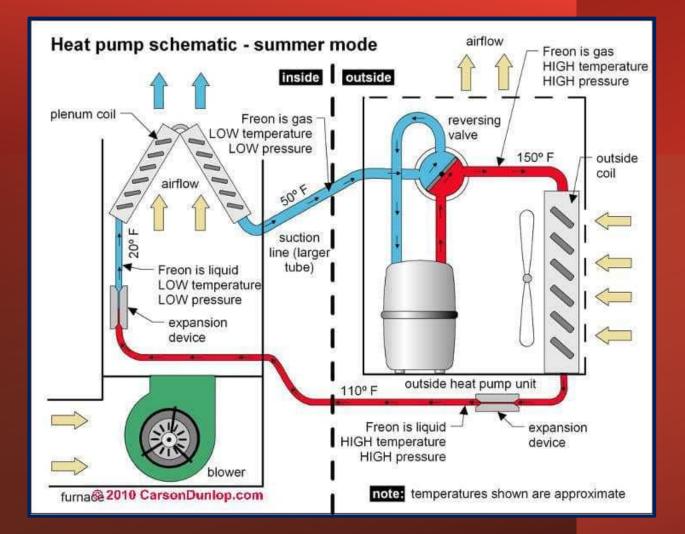
- Blows cold air!
- Noisy
- Energy guzzlers
- Noisy (The Gush)

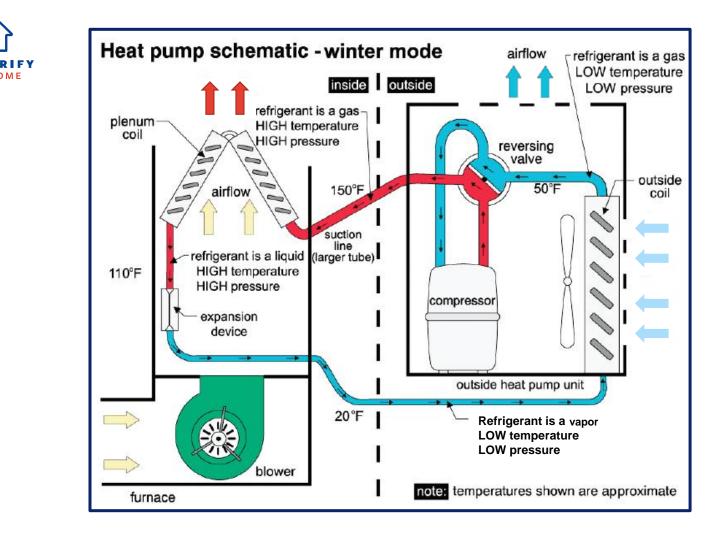
You've heard of the S hitting the **Fan.**

WELL THERES YOUR PROBLEM

Youre AC is broken


HEAT PUMP BASICS


Operation & Application


The Process of Moving Heat

How a Heat Pump Works

MY HOME

Do You Explain "How It Works" To Your Customers?

Confidential - do not duplicate or distribute without written permission from

Intro to Heat Pump Application vs Furnace and Unitary ASHP

Photos of work performed by A-1 Guaranteed Heating & Air Inc. Vallejo, CA

What is Good Electrification?

4 Rationales:
PReduced carbon at the source
Safer appliances
Healthier
More comfortable

What does that mean?

- Installing the most efficient solutions
- Utilizing existing infrastructure when possible
- Consider all electrification requirements from the start

"Good Electrification" Starts with Being a Good Steward for your Customer and their Electric panel

- Steward is: One who directs the affairs in best way possible
- Always most efficient solution!
- Your customers process will be unique to them
- Avoid panel change until necessary
- Take all future loads in a consideration

What Loads to Consider – Breaker Spaces

Most homes converting from gas, will need:

- Heat Pump circuit 2 to 6 spaces
- Pryer 2 spaces (30a)
- Hot water 2 spaces (15a or 30a)
- Range 2 spaces (50a)
- # EV charger 2 spaces (30-50a)

Heat Pumps We Will Be Discussing In This Course

Air to Air

- 🕈 🛛 Mini split
- Ductless and ducted
- 🕴 Unitary

Air to water

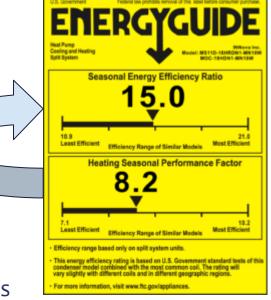
- Hydronic heat hot water only
- Hydronic heat and cool

Water heating

- Unitary HPWH
- Water heating split

Ground source (geothermal)

FYI This is not a Ducted Mini Split!


IMPORTANT TERMS TO KNOW

SEER, EER, COP, HSPF, kW/kWh, Therms, R-value, U-factor

SEER (Seasonal Energy Efficiency Ratio)

- The SEER rating is summer <u>average</u> cooling efficiency
- SEER is a federally mandated rating
- Average across the country
- The SEER rating average temperature is 84.5 degrees
- Averaging takes into consideration wet and dry climates
- Areas with high humidity run their air conditioners at much lower temperatures

SEER vs EER

- Average SEER temp is 84 degrees
- EER temperature is 95 degrees
- Communicating EER can help you get the sale

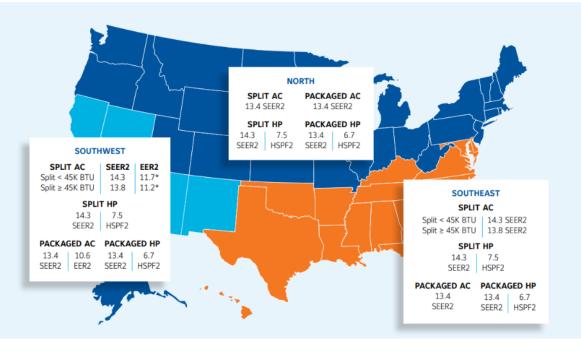
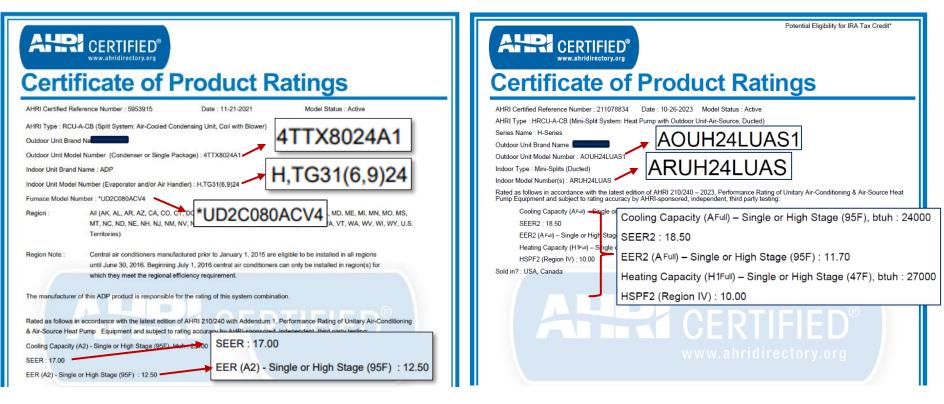

	Dry bulb temperature	Wet bulb temperature	Relative humidity	Dew Point
Outdoor conditions	95°F (35°C)	75°F (24°C)	40%	67°F (19°C)
Indoor conditions	80°F (27°C)	67°F (19°C)	51%	60°F (16°C)

Table 1. Usual test conditions to evaluate EER

SEER 2 is Here !

2023 REGIONAL EFFICIENCIES FOR SPLIT AC, SPLIT HP AND PACKAGED UNITS



Differences: 1) GEOGRAPHIES Southwest North Southeast

2) STATIC PRESSURE SEER 1 = 0.1" water column SEER 2 = 0.5" water column

AHRI Rating Sheets Based on Testing in Perfect Conditions

COP: Coefficient of Performance

- Higher COPs equate to higher efficiency
- Good Heat pumps are COP 3 or better
- Strip heat is COP of 1
- The most efficient furnace at 98% AFUE would be 0.98 COP

Explaining COP in Reference to a Gas Furnace

A bucket holding \$100 of electricity

A bucket holding \$100 of gas

COP of 3 = You get \$300 of heat

Doesn't always mean bill savings!

Most Efficient Furnace = You get \$98 of heat

HSPF: Like SEER in Winter for Heat Pumps

 $HSPF\left(\frac{BTU}{W \cdot h}\right) = \frac{Seasonal\ heating\ delivered\ (BTU/h)}{Seasonal\ electricty\ input\ (W)}$

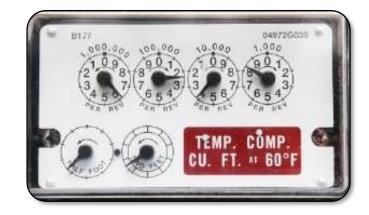
- HSPF the efficiency of air source heat pumps
- HSPF average efficiency over the heating season

Takeaway:

- Higher HSPF = more energy efficient. An electrical resistance heater (not considered efficient) has an HSPF of 3.41
- Higher HSPF = lower operational cost
- HSPF of 10 + is best and found almost only in inverter technology

Kilowatts and Kilowatt Hours

- A kilowatt (kW) is 1000 watts
- A kilowatt is a lot of energy
- Using a kilowatt of energy for one hour is 1 kWh
- Most electric plug-in heaters are 1500 watts or 1.5 kilowatts
- A typical blow dryer is 1.5 to 1.85 kilowatts


THE KILOW/\TTS

Kilowatt Hour (kWh)

- The kilowatt-hour is one kilowatt (kW) of energy sustained for one hour
- The kilowatt-hour is used as a billing unit by electric utilities
- A plug-in appliance uses 1000 watts for 1 hour you used 1 kWh
- PG&E rate is tiered between \$0.36 and \$0.61 per kWh
- The average nationally is \$0.14 per kWh

Therms

- ♥ 1 Therm = ~100,000 BTUs
- The gas measurement factor used in utility billing
- Calculate the energy content delivered, not the volume. Volume is measured in cubic feet
- Ratepayers pay for therms. The cost of maintaining the gas system is carried on the therm

R-Value as it Pertains to Insulation

R-value is a measure of the resistance to the conductive flow of heat

- Measured R-Value varies per material
- R is resistance to energy (heat) flow
- Communicate as 1 degree resistance per R
 - i.e. R50 = 50 degrees resistance

00

Part 1, Quiz 1: Environment, Policy, & Culture + History

1) What is the main chemical component of natural gas?

- A. Methane
- B. Nitrous Oxide
- C. Ozone
- D. Propane

2) How many CA Cities have codes aimed at phasing out gas?

- A. 50+
- B. 18
- C. 4
- D. 1

3) How many homes in CA will need electrification?

- A. 200,000
- B. 900,000
- C. 10 million
- D. 500 million

4) What is the carbon reduction level required by CA in 2030?

- A. 30%
- B. 15%
- C. 10,000 metric tons
- D. 40%

5) Which of the following are rationales for Good Electrification?:

- A. Higher profit projects
- B. Increased emissions at the source
- C. Healthier
- D. More Comfortable
- E. All of the Above
- F. Both C and D

6) When a heat pump operates at low outdoor temperatures what is used for removing frost?

- A. Heat strip
- B. Off cycle
- C. Reversing valve
- D. Pan Heater

2) During the heat pump heating cycle, what causes the outdoor coil to frost?

- A. Low airflow
- B. Low refrigerant charge
- C. Refrigerant temperature below freezing

INSTALL SMALL (i.e., the RIGHT size)

- SEGMENT 3 -

Topics Covered in Segment 3

- Introduction to inverter heat pump application versus the oversized furnace
- Mini-splits: ductless versus ducted
- Using mini-splits for the central solution
- What is "Install Small?" (Installing right-sized)
- Do your homework: the value of load calculations with electrification
- Calculating the opportunity for the downsize
- Poor workmanship examples from the field
- Considerations of ducts and registers

OVERSIZED FURNACES MAY NEVER ACHIEVE OPTIMAL EFFICIENCY

- Versize furnaces short cycle
- Short cycles can't warm up all the way
- Condensation in the early cycle
- Furnace must run to dry
- Causes massive rusting
- You've seen this
- Must run 20 Min to reach design state

Oversized Furnace, Keep This in Mind

- Bigger is not better
- Every furnace is too big
- Furnace size is often determined by SEER goals
- Use the smallest BTU biggest fan
- Never settle because "it's what they have in stock"
- Furnace does not reach steady state until temperature has stabilized; when a furnace is too big, it never stabilizes
- A furnace that is too large can waste <u>significant energy</u>

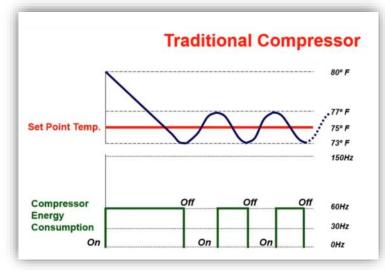
Inverter Heat Pump vs Traditional Unitary

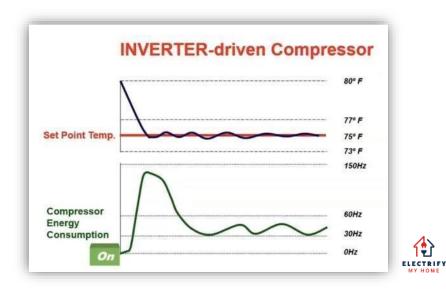
Size matters! Is smaller better? With inverter heat pumps it is.

- Traditional unitary is big, heavy, loud
- With Db ratings 75 to 72 range, can't be installed in many areas
- Most are 14 SEER
- Most require additional 240V for air handler and heater strip
- Standard models cost more over the life of the system

Mini Split will do Anything a Unitary* will do, but Better!

- Mini split tech does the same things, only better!
- Inverter gives large range of operating capacity
- Slim to fit just 20 inches off the wall
- ♥ 56 Db is a loud one; some are <47 Db
- One power wire for most applications
- Low static pressure models for small applications
- Mid static products open new opportunities
- Forgivingly sizeable
- * Traditional single/dual stage unitary





___{>__

Inverter vs Traditional: Inverter Wins Every Time!

- Traditional systems cycle too much
- Uncomfortable temperature swings for the occupants
- More oversized the more negative comfort affects
- Cycling allows the building to dictate comfort

99

The BTU Range

- The low range is referred to as basement BTU's
- Some brands have nominal ratings with higher maximum outputs
- Some brands spec sheets show BTU rating at max output
- Size nominal to load calc BTU
- Extended output above nominal will use more energy

Performance Image: Stubic			18RLI	FCD								
MinMax. Cooling BTUh 3,100-20,100 Nominal Heating BTUh 21,600 LinMax. Heating BTUh 3,100-25,600 ER 11.3 ER Columo Operating Range 'F (*) 14-115 (-10-46) Heat 11.2.0 Columo Operating Range 'F (*) Columo Operating Range 'F (*) 14-115 (-10-46) Heat MinMax. Cooling BTUh 18,000 Med MinMax. Cooling BTUh 3,100-20,100 Oute Nominal Heating BTUh 21,600 Sour MinMax. Heating BTUh 3,100-25,600 Indo MinMax. Heating BTUh 3,100-25,600 Current Rated: Cooling Amps 208-230/60/1 Current Rated: Max: Cooling Outed dB(A) 20727 Coulage/Frequency/Phase 7.3 Power Use Rated/Max: Cooling Amps 7.3												
MinMax. Cooling BTUh 3,100-20,100 Nominal Heating BTUh 21,600 ER 11.3 19,7 BPF 11.3 12,0 Column Operating Range 'F ('C) 14-115 (-10-66) Med MinMax. Cooling BTUh 3,100-20,100 Owninal Cooling BTUh 3,100-20,100 Outer Nominal Cooling BTUh 3,100-20,100 Outer Nominal Heating BTUh 3,100-20,100 Outer Nominal Heating BTUh 3,100-25,600 Now MinMax. Heating BTUh 3,100-25,600 Indo MinMax. Heating BTUh 3,100-25,600 Indo MinMax. Heating BTUh 3,100-25,600 Indo MinMax. Heating BTUh 3,100-25,600 Undo dB(A) 30/30 Discover Sau Current Rated: Cooling Amps 206 Current Rated: Cooling Amps 7.3 Power Use Rated/Max: Cooling KW 1.50/2.50 Size & Weight Bts 15/2.60 Size & Size & Weight	BTUh	<u> </u>	18.0	00								
Nominal Heating BTUh 21,600 Min.Max. Heating BTUh 3.100-25.600 EER 19.7 Apprint 11.3 BR 11.3 BR 12.0 Colling Operating Range T. (*C) Identified Colling BTUh Max Performance Far Nominal Cooling Med MinMax. Cooling Med MinMax. Cooling Mominal Heating BTUh Sour MinMax. Heating Born BTUh Sour MinMax. Heating Medium dB(A) Juited dB(A) Juited dB(A) Juited dB(A) Juited dB(A) Juited JdB(A) Juited JdB(A) Juited JdB(A) Juited JdB(A) Juited JdB(A) Juited JdB(A) Juited Juited Juited Juit	BTUh											
Nominal Cooling BTUh 18,000 Med Arc Nominal Cooling BTUh 18,000 Med Arc MinMax. Cooling BTUh 3,100~20,100 Ouio Nominal Heating BTUh 21,600 Nominal Heating BTUh 3,100~25,600 Noinal Heating BTUh 3,100~25,600 MinMax. Heating BTUh 3,100~25,600 Medium dB(A) 20/29 Ouiet dB(A) 20/29 Ouiet dB(A) 20/29 Ouidoor Sound Level Cig/Htg BB(A) 54/55 Electrical Minch. 72/52/25 51/16 Voltage/Frequency/Phase 208-230/60/1 Ectrical Voltage/Frequency/Phase 20/23/2 51/26 BetteW	BTUh		21,6	00								
ppr 11.3 ER 12.0 Operating Range F (*) 14-115 (-10-66) Performance Fait Nominal Cooling Medi MinMax. Cooling Low BTUh Outlie Nominal Cooling Medi MinMax. Cooling BTUh 3,100-20,100 Outlie Nominal Heating Fans BTUh Sour MinMax. Heating Bd(A) 32/32 Medium dB(A) Low dB(A) Outlet dB(A) Outlet dB(A) Outlet dB(A) Outlet dB(A) Outlet dB(A) Outlage/Frequency/Phase 208-230/60/1 Current Rated: Cooling Amps Current Rated: Cooling Amps Current Rated: Meating KW Nobage/Frequency/Phase 10.6772.60 Size & Weight Net Wight Net Weight Inch 725/23	BTUh		3,100~2	5,600								
Image: Nominal Cooling III.0 Fait Nominal Cooling BTUh MinMax. Cooling BTUh 3,100-20,100 Low Nominal Heating BTUh 21,600 Low Nominal Heating BTUh 3,100-25,600 Indo MinMax. Heating BTUh 3,100-25,600 United dB(A) 29/29 0 Outed dB(A) 29/29 0 Outedor Sound Level Clightig B(A) 54/55 1 Electrical Voltage/Frequency/Phase 7.3 7 Voltage/Frequency/Phase 0.66 20-12 1 Current Rated: Heating Amps 7.3 7 Power Use				•								
Column Operating Range *F (*C) 14-115 (-10-46) Hear Mare Fan Ar C Performance Med Low Nominal Cooling BTUh 18,000 Med Low MinMax. Cooling BTUh 3,100-20,100 Quie Fan Nominal Heating BTUh 21,600 Sour MinMax. Heating BTUh 3,100-25,600 Indo MinMax. Heating BTUh 3,100-25,600 Indo MinMax. Heating BTUh 3,100-25,600 Universe GB(A) 29/29 GUiet Ouidoor Sound Level Clg/Htg dB(A) 29/277 Guidoor Sound Level Clg/Htg dB(A) 20/277 Outdoor Sound Level Clg/Htg MB(A) 54/55 Electrical State def/Max: Heating Amps 7.3 Power Use Rated/Max: Heating Amps 7.3 Power Use Rated/Max: Heating KW 1.5/02.15 Power Use Rated/Max: Heating Min 1.6/7.25/32 S-15/16 6 20 20-1/2 Size & Weight Inch 7.25/32 S-15/16 6 20 21-1/2 Min </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-								
Herior Performance Far Nominal Cooling BTUh 18,000 Medi MinMax. Cooling BTUh 3,100-20,100 Ouie Nominal Heating BTUh 21,600 Nominal Heating BTUh 3,100-25,600 Sour MinMax. Heating BTUh 3,100-25,600 Indo 30/30 Btuh 3,100-25,600 Indo 30/30 Btuh 3,100-25,600 Indo 4B(A) 30/30 Btuh 3,100-25,600 Undo BB(A) 29/29 Btuh 3,100-25,600 Outed dB(A) 29/29 Btuh 3,100-25,600 Curent Rated: BB(A) 29/29 Btuh 3,100-25,600 Curent Rated: BB(A) 20/27 Btuh 3,100-25,600 Current Rated: BB(A) 20/27 Btuh Btuh State Voltage/Frequency/Phase 206 20/200 Btuh State Btuh State Now Use Rated/Max: Heating Amp	05 (05)											
Medical Arrow Performance Fan Nominal Cooling BTUh 18,000 MinMax. Cooling BTUh 3,100-20,100 Ouie Nominal Heating BTUh 21,600 Sour Nominal Heating BTUh 21,600 MinMax. Heating BTUh 3,100-25,600 Hi dB(A) 32/32 Hedium dB(A) 30/30 Low dB(A) 29/29 Quiet dB(A) 27/27 Outidor Sound Level Clg/Htg dB(A) 54/55 Electrical Voltage/Frequency/Phase 206-230/60/1 Circuit Breaker Amps 20 Current Rated: Cooling Amps 7.3 Power Use Rated/Max: Heating kW 1.67/2.60 Size & Weight Inch 7.5/32 5.15/15 6.20 Width Inch 35/32 5.15/15 6.20 200 Width Inch 35/32 30 31-3/32 200 Weight Inch	ግ ሮር		14~115 (-	10~46)							
Airc Nominal Cooling Bluh 18,000 Medi Low MinMax. Cooling BTUh 3,100-20,100 Nominal Heating BTUh 21,600 Sour MinMax. Heating BTUh 3,100-25,600 Indo BTUh 3,100-25,600 MinMax. Heating BTUh 3,100-25,600 Indo BR(A) 32/32 Medium dB(A) 30/30 Low dB(A) 20/29 Quiet dB(A) 20/29 Quiet dB(A) 20/29 Quiet dB(A) 50/23 Discretion Sound Level Clg/Htg dB(A) 54/55 Electrical Voltage/Frequency/Phase 20 Current Rated: Cooling Amps 7.3 Power Use Rated/Max: Heating Amps 7.3 Power Use Rated/Max: Heating kW 1.67/2.60 Size & Weight Ibs. (kg) 50 (23) 66 24-1/2 Dimensions: Height Inch 35-7/16 32-15/2 51/26 26/27 20												
MinMax. cooling Brun 3,100-20,100 Quie Nominal Heating BTUh 21,600 Sour MinMax. Heating BTUh 3,100-25,600 Indosense cography dB(A) 32/32 Medium dB(A) 30/30 Low dB(A) 29/29 Quiet dB(A) 29/29 Quiet dB(A) 54/55 Electrical Voltage/Frequency/Phase 208-230/60/1 Current Rated: Cooling Amps 7.3 Power Use Rated/Max: Cooling KW 1.50/2.15 Power Use Rated/Max: Heating KW 1.67/2.60 Size & Weight Inch 7.23 Dimensions: Height Inch 7.24 Minh 100 850 Dipeth Inch 3.24 Minh 11.72 20	ling				BTU	Jh				18	3,00	00
Fan BTUh 3,100~25,600 Indo- MinMax. Heating BTUh 3,100~25,600 Indo- Medium dB(A) 32/32 Medium dB(A) 30/30 Low dB(A) 29/29 Quiet dB(A) 29/29 Outdor Sound Level Clg/Htg dB(A) 54/55 Electrical Voltage/Frequency/Phase 208 200 Current Rated: Cooling Amps 7.3 Power Use Rated/Max: Cooling KW 1.50/2.15 Power Use Rated/Max: Heating Amps 7.3 Power Use Rated/Max: Heating KW 1.67/2.60 Size & Weight Inch 7-25/32 5-15/16 6 24-1/2 Dimensions: Height Inch 3-5/7/6 33 30 31-3/32 Width Inch 32/32 30 31-3/32 30 31-3/32 Depth Inch 13/32 3/4 3/4 Flat 11/32 3/4 3/4 11/4	oling				BTU	Jh			3	,100	-2	0,100
Sour MinMax. Heating BTUh 3,100-25,600 Indo. Indo. 3/30 0 </td <td>ting</td> <td></td> <td></td> <td></td> <td>BTU</td> <td>Jh</td> <td></td> <td></td> <td></td> <td>21</td> <td>1,6</td> <td>00</td>	ting				BTU	Jh				21	1,6	00
Hi Outer of the transmission of transmis of transmission of transmission of transmi	ating				BTU	Jh			3	,100	-2	5,600
Medium dB(A) $30/30$ Low dB(A) $29/29$ Quiet dB(A) $29/29$ Outdoor Sound Level Clg/Htg dB(A) $54/55$ Electrical 208-230/60/1 Voltage/Frequency/Phase 208-230/60/1 Current Rated: Cooling Amps 20 Current Rated: Cooling Amps 7.3 Power Use Rated/Max: Cooling kW 1.50/2.15 Power Use Rated/Max: Cooling kW 1.67/2.60 Size & Weight Ibs. (kg) 50 (23) 86 (39) Dimensions: Height Inch 7.25/32 5-15/16 6 24-1/2 Midth Inch 35-7/16 62 24-1/2 1/3 1/3/2 Dimensions: Height Inch 35-7/16 62 790 1/3/32 Depth Inch $\frac{24-}{13/32}$ 3/4 3/4 Flat 11/32 Incertify Incertify 1/16 Depth Inch 22/32 3/4 3/4 Flat 11/32 Incertify <t< td=""><td>dB(A)</td><td></td><td>32/3</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	dB(A)		32/3	2								
Low dB(A) 29/29 Quiet dB(A) 27/27 Outdoor Sound Level Clg/Htg dB(A) 54/55 Electrical 208-230/60/1 Circuit Breaker Amps 20 Current Rated: Cooling Amps 6.6 Current Rated: Cooling Amps 7.3 Power Use Rated/Max: Cooling kW 1.50/2.15 Power Use Rated/Max: Cooling kW 1.67/2.60 Size & Weight 1 16.7/2.50 Size & Weight 1 1.67/2.60 Width Inch 7.25/32 5-15/16 6 Midth Inch 35-7/16 32- 30 31-3/32 Dimensions: Height Inch 35-7/16 32- 30 31-3/32 mm 900 850 7.62 790 24- 11/- Depth Inch 2/24- 3/4 3/4 Flat 11/- 11/- mm 620 19 19 Flat 290 Exerererererererererererererererererere												
Outdoor Sound Level Clg/Htg dB(A) 54/55 Electrical	dB(A)		30/3	0								
Voltage/Frequency/Phase 208-230/60/1 Circuit Breaker Amps 20 Current Rated: Cooling Amps 6.6 Current Rated: Heating Amps 7.3 Power Use Rated/Max: Cooling KW 1.50/2.15 Power Use Rated/Max: Heating kW 1.67/2.60 Size & Weight Net Weight 165. (kg) Dimensions: Height Inch 7.57/25 Midth Inch 35-7/16 6 Midth Inch 32-7/16 33-3/2 Depth Inch 2/24-11/2 790 Depth Inch 2/24-11/2 790 Midth 10 19 19 Flat 290	dB(A)		29/2	9								
Circuit Breaker Amps 20 Current Rated: Coling Amps 6.6 Current Rated: Heating Amps 7.3 Power Use Rated/Max: Cooling KW 1.50/2.15 5 Power Use Rated/Max: Heating KW 1.67/2.60 5 Size & Weight KW 1.67/2.60 5 Dimensions: Height Inch 7-25/32 5-15/16 6 24-1/2 Dimensions: Height Inch 7-25/32 5-15/16 6 24-1/2 1 1 1 1 2 620 33-3/3 30 31-3/32 1	dB(A) dB(A)		29/2 27/2	!9 !7								
	dB(A) dB(A)		29/2 27/2	!9 !7								
	dB(A) dB(A)		29/2 27/2 54/5	9 27 5								
Power Use Rated/Max: Cooling kW 1.50/2.15 Power Use Rated/Max: Heating kW 1.67/2.60 Size & Weight 1.67/2.60 Net Weight Ibs. (kg) 50 (23) 86 (39) Dimensions: Height Inch 7-25/32 5-15/16 6 24-1/2 Dimensions: Height Inch 35-7/16 152 620 Width Inch 35-7/16 15/322 30 31-3/32 pmm 900 850 762 790 Depth Inch 2/3/2 3/4 3/4 Flat 11/- 11/32 mm 620 19 19 Flat 290 ELECETRIFY 100	dB(A) dB(A) dB(A)		29/2 27/2 54/5 208-230	29 27 55 0/60/1								
Power Use Rated/Max: Heating kW 1.67/2.60 Size & Weight Ibs. (kg) 50 (23) 86 (39) Dimensions: Height Inch 7-25/32 5-15/16 6 24-1/2 Midth Inch 35-7/16 151 152 620 33-3/32 Width Inch 35-7/16 37-2 790 31-3/32 TO (Electricity 100 Depth Inch 2/4- 13/32 3/4 3/4 (Hat 11/3) 11- 11/32 Electricity 100	dB(A) dB(A) dB(A) Amps		29/2 27/2 54/5 208-230 20	9 27 55 0/60/1								
	dB(A) dB(A) dB(A) Amps Amps Amps		29/2 27/2 54/5 208-230 208-230 200 6.6	19 27 55 0/60/1								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	dB(A) dB(A) dB(A) Amps Amps Amps kW		29/2 27/2 54/5 208-230 208-230 6.6 7.3 1.50/2	29 27 55 0/60/1 5 1 2.15								
Inch 7-25/32 5-15/16 6 24-1/2 Dimensions: Height Inch 7-25/32 5-15/16 6 24-1/2 mm 198 151 152 620 Width Inch 35-7/16 31-3/32 mm 900 850 762 790 Depth Inch 13/32 3/4 3/4 Flat 11- 11/32 mm 620 19 19 Flat 290 ELECTRIFY 100	dB(A) dB(A) dB(A) Amps Amps Amps kW		29/2 27/2 54/5 208-230 208-230 6.6 7.3 1.50/2	29 27 55 0/60/1 5 1 2.15								
Dimensions: Height mm 198 151 152 620 Width Inch 35-7/16 33- 15/32 30 31-3/32 Width mm 90 850 762 790 Depth Inch 24- 13/32 3/4 3/4 Flat 11- 11/32 11/2 mm 620 19 19 Flat 290 ELECTRIFY 100	dB(A) dB(A) dB(A) Amps Amps Amps kW kW kW		29/2 27/2 54/5 208-230 208-230 6.6 7.3 1.50/2	29 27 55 0/60/1 5 1 2.15								
Width Inch 35-7/16 $\frac{33}{15/32}$ 30 31-3/32 mm 900 850 762 790 Depth Inch $\frac{24}{13/32}$ $3/4$ $3/4$ Flat $11-1/1/32$ mm 620 19 19 Flat 290 ELECTRIFY 100	dB(A) dB(A) dB(A) Amps Amps Amps kW kW kW kW		29/2 27/2 54/5 208-230 20 6.6 7.3 1.50/2 1.67/2	29 27 55 0/60/1 5 2.15 2.60								
mm 900 850 762 790 Depth Inch 24- 13/32 3/4 3/4 Flat 11- 11/32 mm 620 19 19 Flat 290 ELECTRIFY 100	dB(A) dB(A) dB(A) Amps Amps Amps kW kW kW Ibs. (kg) Inch	7-25/32	29/2 27/2 54/5 208-230 20 6.6 7.3 1.50/2 1.67/2 5-15/16	29 27 55 0//60/1 5 2.15 2.60 6	24-1/2							
Depth IICC 13/32 3/4 3/4 Flat 11/32 II/32 III/32 II/32 II/32 II/32 II/32 II/32 II/32 II/32 II/32 II/32	dB(A) dB(A) dB(A) Amps Amps Amps kW kW kW kW ibs. (kg) Inch mm	7-25/32 198	29/2 27/2 54/5 208-230 200 6.6 7.3 1.50/2 1.67/2 5-15/16 151 33-	29 27 55 0/60/1 5 2.15 2.60 6 152	24-1/2 620							
	dB(A) dB(A) dB(A) Amps Amps Amps kW kW kW ibs. (kg) Inch mm Inch	7-25/32 198 35-7/16	29/2 27/2 54/5 208-230 20 6.6 7.3 1.50/2 1.67/2 5-15/16 151 33- 15/32	29 27 55 55 0/60/1 2.15 2.60 6 152 30	24-1/2 620 31-3/32							
Refrigerant R410A R410A	dB(A) dB(A) dB(A) dB(A) Amps Amps Amps Amps kW kW kW kW kW kW kW kW kW kW kW	7-25/32 198 35-7/16 900 24-	29/2 27/2 54/5 208-23(20 6.6 7.3 1.50/2 1.67/2 5-15/16 151 33- 15/32 850 3/4	99 27 55 55 7 7 60 152 2.60 7 60 152 30 7 62 31/4 Flat	24-1/2 620 31-3/32 790 11- 11/32				í			100
Low Quiet Quiet Quitoor Sound Level Clg/Htg Electrical Voltage/Frequency/Phase Circuit Breaker Current Rated: Cooling Current Rated: Heating Power Use Rated/Max: Heating Power Use Rated/Max: Heating Size & Weight Net Weight Dimensions: Height Width Depth		BTUH BTUH BTUH BTUH TF (C) Ing oling ting ting	BTUh BTUh BTUh BTUh TF (C) Ing oling ting ting	BTUh 18,0 BTUh 3,100-2 BTUh 21,6 BTUh 3,100-2 Ing 11. TE (°C) 14-115 (c Ing 11. Ing 11. Ing 11. Ing 11. Ing 11. Ing 11. Ing 11.	BTUh 18,000 BTUh 3,100-20,100 BTUh 21,600 BTUh 21,600 BTUh 3,100-25,600 19,7 11,3 12,0 "F (°C) 14-115 (-10-46 ling oling ting ting	BTUh 18,000 BTUh 3,100-20,100 BTUh 21,600 BTUh 3,100-25,600 III.3 12,0 TF (°C) 14-115 (-10-46) Ing BTU oling BTU ting BTU sating BTU	BTUh 18,000 BTUh 3,100-20,100 BTUh 21,600 BTUh 3,100-25,600 I1.3 12,0 TF (°C) 14-115 (-10-46) Ing BTUh oling BTUh ting BTUh sating BTUh	BTUh 18,000 BTUh 3,100-20,100 BTUh 21,600 BTUh 3,100-25,600 III.3 12,0 TF (°C) 14-115 (-10-46) Ing BTUh oling BTUh ting BTUh coling BTUh ting BTUh ting BTUh ting BTUh	BTUh 18,000 BTUh 3,100-20,100 BTUh 21,600 BTUh 3,100-25,600 Ing 11.3 12.0 12.0 TF (°C) 14-115 (-10-46) Ing BTUh oling BTUh ting BTUh ting BTUh ting BTUh ting BTUh	BTUh 18,000 BTUh 3,100-20,100 BTUh 21,600 BTUh 3,100-25,600 Ing 11.3 12.0 12.0 "F (°C) 14-115 (-10-46) Ing BTUh ating BTUh BTUh 3	BTUh 18,000 BTUh 3,100-20,100 BTUh 21,600 BTUh 3,100-25,600 Ing 11.3 12.0 12.0 Tr (C) 14-115 (-10-46) Ing BTUh BTUh 3,100 Ing BTUh BTUh 18 Oling BTUh BTUh 3,100 ting BTUh BTUH 3,100 ting BTUh	BTUh 18,000 BTUh 3,100-20,100 BTUh 21,600 BTUh 21,600 BTUh 3,100-25,600 11.3 12.0 TF (°C) 14-115 (-10-46) Ing BTUh 0ling BTUh 3,100-2 3,100-2 ting BTUh 3,100-2 8TUh 3,100-2 14-115

Watt Draw is Exceptionally Low (think hair dryer)

Electrical

Voltage/F

Current R Current R Power Use

Power Us

18RLFCD

UP TO 21.5 SEER

- **•** Rated current 6.6a cooling
- 🕈 Rated current 7.3a heat
- Cooling at nominal output 1.5 kw
- Most of these smaller ducted 1000 watts per ton +/-
- 🕈 🛛 Heat at nominal 1.67
- Typical hair dryer 1800 watts

	Performance						
	Nominal Cooling		BTUh		18,	000	
	MinMax. Cooling		BTUh	3,100~20,100			
	Nominal Heating		BTUh		21,	600	
						0	
		_			_		
requency/Phase			208	-230	/60/	1 (6) (4)	
eaker	Amps	s 20					
ated: Cooling	Amps			6.6			
ated: Heating	Amps			7.3			
e Rated/Max: Cooling	kW		1.	.50/2	.15		
e Rated/Max: Heating	kW		1.67/2.60				
	Hi	r (cig/nig):	dB(A)		32	/32	
	Medium		dB(A)		30	/30	+
	Low		dB(A)	29/29			-
	Quiet		dB(A)	27/27			
	Outdoor Sound Lev	el Cla/Hta	dB(A)		54	/55	
	Electrical			_			
	Voltage/Frequency	/Phase			208-23	30/60/1	
	Circuit Breaker		Amps	20			
	Current Rated: Coo		Amps			.6	
	Current Rated: Heating		Amps	7.3			
	Power Use Rated/N Power Use Rated/N		kW			/2.15	
	Power Use Rated/A Size & Weight	tax: Heating	kW		1.67	/2.60	_
	Net Weight		lbs. (kg)	50 (23)			86 (39
			Inch	7-25/32	5-15/16	6	24-1/2
	Dimensions: Heigh	t	mm	198	151	152	620
	Width		Inch	15/32			31-3/3
	mm 900 <mark>850</mark>				762	790	
	Depth		Inch	24- 13/32	3/4	3/4 Flat	11- 11/32
			mm	620	19	19 Flat	290
	Refrigerant		R410A				

ELECTRIFY 101

Quiet

- ♥ 55 dB is typical
- ♥ Some as low as 47 dB
- Traditional systems are 72 to 76 dB
- Install with big return air ducts and grilles
- Standard static unit shown

					18R	LFCD	_
Sound							
Indoor Sound Level (Clg/Htg): Hi	dB(A)		32/3	2			
Medium	dB(A)		30/3	0			-
Low	dB(A)		29/2	9			
Quiet	dB(A)		27/2	7			
Outdoor Sound Level Clg/Htg	dB(A)		54/5				₽
	nearing open	aung kange	r(y)	-	-2~/21	-21~24)	4
	Moisture Rem		Pt./h (l/h)			(2.0)	
	Fan (Cooling)						
	Air Circulation		CFM (m3/h)		554	(940)	
	Medium		CFM (m3/h)			(880)	
	Low		CFM (m3/h)		483	(820)	
	Quiet		CFM (m3/h)		442	(750)	
	Fan Speed Sta			4+2	auto		
	Sound						
	Indoor Sound Level (Clg/Htg): Hi		dB(A)	32/32			
	Medium		dB(A)		30	/30	
	Low		dB(A)		29	/29	
	Quiet		dB(A)		27	/27	
		d Level Clg/Htg	dB(A)		54	/55	
	Electrical						
	Voltage/Frequ			208-23	30/60/1		
	Circuit Breaker		Amps	20			
	Current Rated	Amps	6.6				
	Current Rated: Heating		Amps	7.3			
		ted/Max: Cooling	kW	1.50/2.15			
		ted/Max: Heating	kW		1.67	/2.60	
	Size & Weight	t					
	Net Weight		lbs. (kg)	50 (23)	5.15.0.6	6	86 (3
	Dimensions: H	leight	Inch mm	7-25/32	5-15/16	6 152	24-1 620
	Width		Inch	35-7/16	33- 15/32	30	31-3/
			mm	900	850	762	790
	Depth		Inch	24- 13/32	3/4	3/4 Flat	11-
			mm	620	19	19 Flat	290
	Refrigerant				R4	10A	

Lunch Time

Interested in Learning more?

3-month cohort program available

- ♥ 3 C REN wants you to succeed!
- Program available to six vetted contractors
- No cost, just a commitment
- What's included? Weekly web video calls to discuss your progress, prospects, planning and problems
- Traveling on-site training for your install technicians*

Additional costs:

* On-site visits * Design services * Load calc services *

Inverter Vs Inverter – Different Approaches

Feature	Fully modulating and communicating inverter	Temperature-sensing and pressure- based inverter
SYSTEM TYPE	Mini-split based; some very high end unitary	Unitary
EFFICIENCY	Based on nominal rated outputs	Great efficiencies
CONTROLLER	Manufacturer communicating controller	Traditional on/off thermostat, 24-volt
CONTROL FEATURE	Adjusts output based on control setting	Does not respond to t-stat changes in real time
COMPRESSOR SPEED	Up to 700+ points of communication	Based on coil temp
AIR SPEED	No fixed air speed	Fixed blower speed ECM
COMPONENT COMMUNICATION	All components	NA
POWER (Air Handler)	Wire from AH to ODU (typically)	AH requires its own circuit
CAPACITY	Some run 20% to 130%	Adjustable based on setting 105

Mini Split Heat Pumps Ductless vs Ducted

Ductless Advantages

- Single zones 1-1 wall mounts efficiency up to 31 SEER +
- Lots of configurations and styles
- Great for 1-3 room with multi zone

Ductless Disadvantages

- Condensation drain dictates location
- Outside wall or pump
- Difficult for service
- Tough sell for because of aesthetics

Single Zone Ducted

Advantages

- Multiple rooms with 1 unit
- Smaller capacity needed compared to multiple wall units
- 🕴 Quieter
- 🕴 Discrete
- Higher efficiencies in one-to-one application
- Easier Sell to the aesthetic eye
- Works like central forced air

Disadvantages

- More involved installation
- Needs "better install quality"
- Needs a load calc for best result
- Labor hours
- Correct registers

Multi-Zone Systems: Ductless

Advantages

- Flexibility for multi-room solutions
- Houses with a separate climate zones
- Branch boxes reduce line set lengths
- Less space needed

Disadvantages

- More refrigerant
- More chance for leaks
- Capacity penalty
- Less efficient
- No redundancy
- More difficult to repair
- More complicated installation

What Do You Think of This?

ELECTRIFY 109

In this application multi zone, may be a better option

Getting Closer?

LEFT: 36K Multi-Zone Unit, RIGHT: 1x 18k Unit + 2x 9k Units



Photos of work performed by A-1 Guaranteed Heating & Air Inc. Vallejo California

Choose the Right Setup: What's Better, MZ or Multiple 1-to-1 units?

- Originally a 3-ton outdoor unit with three ducted air handlers
- Customer was not satisfied
- Erratic temperatures
- Part of house was less efficient and required more runtime
- System can only modulate down so far
- When a lower output than the minimum BTUs refrigerant will be sent to other zones
- System waived all night

0-0		T(°F) : Sensor #005 spare bedroom back		T(°F) : Sensor #008 kitchen counter	T(°F) : Sensor #009 dining room table	T(°F) : Sensor #010 spare bedroom return air
min	62.50	63.00	67.60	65.60	66.10	66.40
max	69.10	72.20	71.80	71.90	71.50	72.10
diff	6.60	9.20	4.20	6.30	5.40	5.70

No data found for sensor ID 22F0022C, Sensor #004 main unit return air

Switching to 3-1 to 1 Made Amazing Difference...Expensive Mistake!

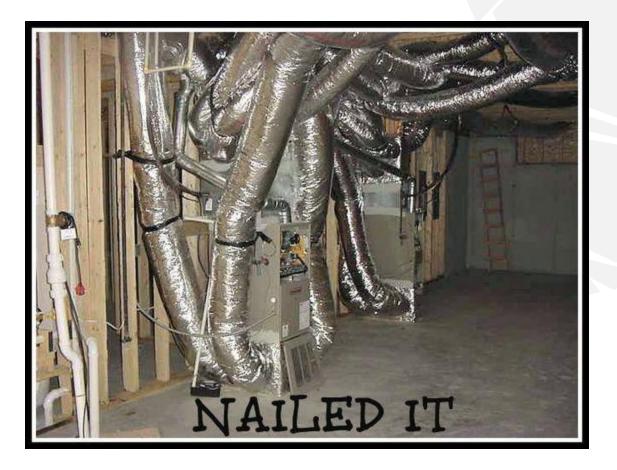
	T(°F): Sensor #001 Supply living grille	T(°F) : Sensor #002 supply bedrooms back grille	spare	#004 main unit	T(°F) : Sensor #005 spare bedroom back dresser	#006 above tstat in spare bedroom front	a should be a construction of the	T(°F) : Sensor #008 kitchen counter	T(°F) : Sensor #009 Master bed tstat	T(°F) : Sensor #010 spare bedroom return air
min	76.70	82.60	72.20	73.20	73.10	73.30	73.30	72.30	71.00	74.10
max	83.30	91.70	72.90	73.50	74.10	73.80	73.90	72.50	72.60	75.90
diff	6.60	9.10	0.70	0.30	1.00	0.50	0.60	0.20	1.60	1.80

Photos of work performed by A-1 Guaranteed Heating & Air Inc. Vallejo California

Space Saving Design Creates Opportunities

- Great for tight attics
- Keep ducts low for burial
- OK if not all ducts can be buried
 - Use R-8 in those instances

Vertical Tuckaway Install is Possible with Some Brands* - Check First



*Not all brands can be installed vertically. This is Fujitsu ARU series low static.

ELECTRIFY 117

More Opportunity for Retrofit

- 🕴 In an alcove
- Or drop a ceiling in a hallway
- Always install dampers on each run

Direct Replacement in Furnace Location

This Method **Not** Recommended

What is Install Small?

- Install Small means putting in the right sized system!
- Industry experts agree most 60% +HVAC systems installed in California every day are oversized
- Remember the term "install small" to remind you to be observant
- Install smaller can't be done without understanding how to lower the load
- You must use the whole house approach. (House as a system)

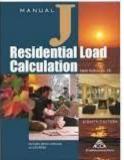
Key Points of Installing Small

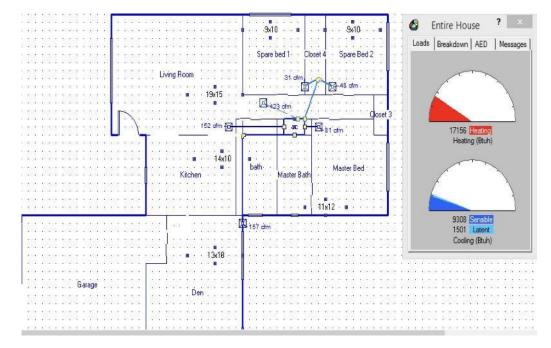
🕴 DO A LOAD CALC

- Our typical system 750 to 900 sq ft per ton
- 🕈 If tight, up to 1,150 sq ft per ton
- Some contractors up to 2,250 sq ft in new construction
- ♥ Our smallest 9,000 BTUs on 975 sq ft
- In some situations, we do not downsize as aggressively
- Some air sealing is always included
- Insulation must be addressed



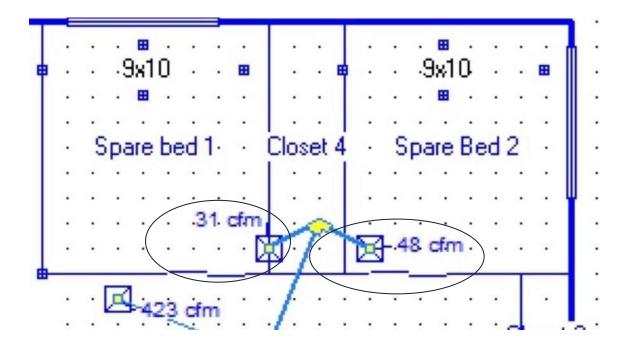
The Value of Load Calculations With Electrification



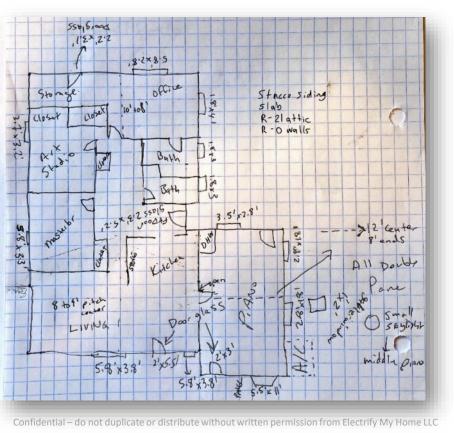

Downsizing Requires Thought and Pre-Planning

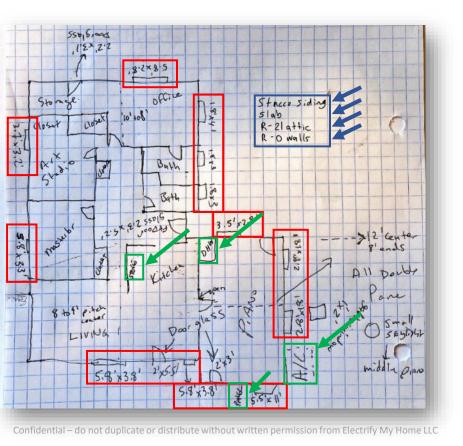
- A load calculation is required
- You will be surprised how small of a system you will need

AIR CONDITIONING CONTRACTORS OF AMERICA

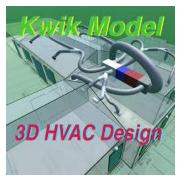


Without a Calculation How Would you Know?


- Same size rooms
- Same size windows
- Same side of the house
- Different requirements



- Keep scale consistent 2' per square
- Use laser measurer to save time
- Don't worry about getting it down to the last half inch!

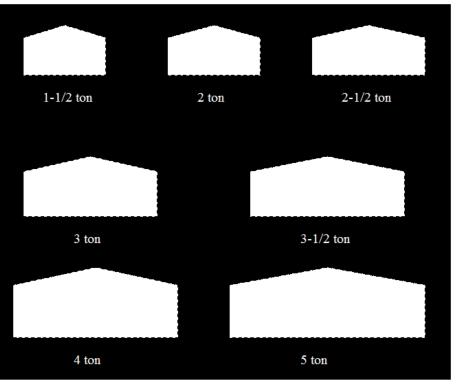

- Windows note size & type
 - E.g., 5.8' x 2.8', double pane vinyl
 - U-factor & SHGC if available
- Siding list type (stucco or wood)
- Foundation Slab/Crawl/Mix
- Insulation levels & type
- Locations of appliances
 - Panel(s)
 - 🕈 Indoor & Outdoor Unit
 - 🕈 Water heater
 - Range/Stove

Approved ACCA Manual J Software Options

MiTek WRIGHTSOFT

Elite Software

HeatCAD[®] 2024



Free HVAC Load Calculator

Instructions:

- 1. Print template and cut out the white area of each house
- 2. Stand across the street in front of the home
- 3. Hold template out at arms length
- 4. Beginning with the smallest cut-out, look through each cut-out at home,
- 5. Select the first cutout that is completely filled by the homes' image
- 6. Below the selected cut-out will be the correct air conditioner size

Small Inverters Are The Best Option For Electrification

- Extra care when installing ductwork
- Half the cfm of old system
- Duct installed straight with mechanical elbows at every sharp turn
- Duct pulled tight to eliminate the interior ripple effect to manage static pressure
- Great care should be given to this process

Sizing for Performance

- General sizing rules should be followed for best results
- Shoot for 750 to 1 ton per thousand square feet
- But only if you've made the improvements shown in the sections above
- Inverter makes possible no more than 15,000
 BTUs for 1,000 ft²
- More airflow is better (Why we set the airflow to high level)
- Look for a narrow split temperature 17 to 20 degrees no more
- Larger split temperatures mean you're not moving enough air

HVAC EQUIPMENT CAPACITY				
Check Numbers (New Systems)	Description			
15,000 Btu/h per 1,000 ft² (Conditioned space)	Target maximum installed heating capacity. Lower Btu/h per 1,000 ft2 are better, because the higher Btu/h of furnace capacity needed to heat 1,000 ft2, the less effective is the current heating system. (Greater potential for improvement)			
1 Ton per 1,000 ft² (Conditioned space)	Target maximum installed cooling capacity. Lower # of tons per 1,000 ft2 are better, because the higher the tons per 1,000 square feet, the less effective is the current cooling system. (Greater potential for improvement)			
450 - 500 cfm per ton of AC system capacity	Target minimum total supply air flow Lower flow rates are not efficient in the dry California climate			
60°F	Lowest desirable coil-leaving air temperature during cooling operation			
90°F	Highest desirable coil-leaving air temperature during heating operation			

What Needs to be Done to Downsize: First, Never Upsize

- It is almost never necessary to upsize
- Air flow problems rarely mean you need a bigger system
- Adding additional square footage onto an old house often reduces load
- Never sizes system for a future expansion remodel
- Stop telling the customers their ducts are fine; they're usually not

Photo Credit: Bailes, Allison (2014). My Big Fat Oversized Air Conditioner. Energy Vanguard.

How to Recognize an Oversized System

OVERSIZED SYSTEM	RIGHT-SIZED SYSTEM		
Louder	Quiet		
Higher Heat Rise	Warms House, Not Heat It		
Short Cycles	Longer Cycles, Good Air Mixing		
Causes Discomfort	Not Noticed		

The 3 Types of Heat Transmittance

Conduction

Convection

Conduction Convection Radiation

Radiation

KNOW YOUR LOAD!

The Prerequisite to Downsizing

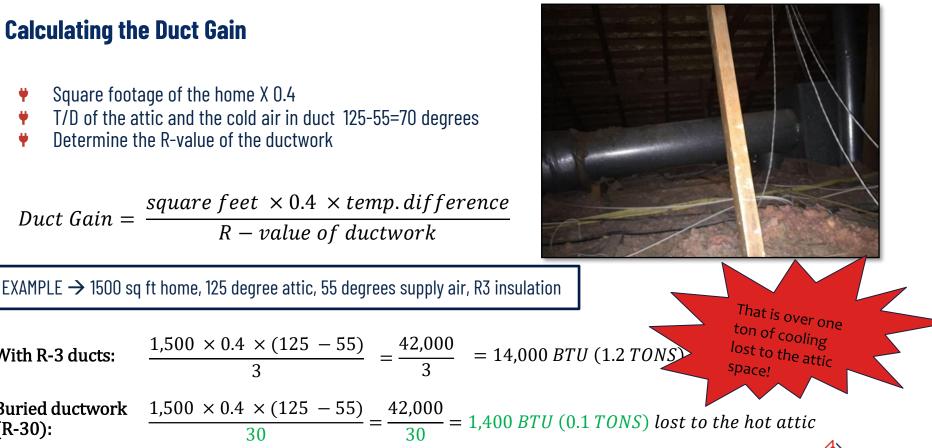
Understand the Envelope (Thermal Barrier)

Attic Insulation Intro:

- When heat is radiated onto the roof surface, the attic space heats up via conduction
- A sparsely insulated attic will heat the house via radiation
- The conduction on the ceiling causes very aggressive heat gain
- Insulating to R-49 will give us a 49degree barrier

Understand existing condition of the envelope & plan for improvements

Calculating the Duct Gain


With R-3 ducts:

Buried ductwork

(R-30):

- Square footage of the home X 0.4
- T/D of the attic and the cold air in duct 125-55=70 degrees
- Determine the R-value of the ductwork

 $Duct \ Gain = \frac{square \ feet \ \times \ 0.4 \ \times \ temp. \ difference}{R - value \ of \ ductwork}$

Differential:

= 6,000 BTU

Combined Calculated BTU Savings with Insulation

1500 square foot example

Air Conditioner Size36,000 BTUSavings from burying ducts-12,000 BTUSavings from insulating attic to R-49-5,700 BTUNew reduced load18,300 BTU!

Remember Velocity

Your supply registers need double the velocity of the return air.

Meaning they should blow twice as hard as a return pulls.

AIR DISTRIBUTI	ON DESIGN		
Check Numbers or New Systems	Description		
500 - 700 fpm	Minimum and maximum discharge velocity from supply air diffusers		
250 fpm	Maximum velocity through return air grills and filters		
1.35" to 0.45" wc	Duct design target - Max external static pressure for the air handler's fan. (Maximum combined resistance of supply and return duct systems, including coils, filters, supply diffusers and return grills)		
50 cfm ₂₅ or 5% of measured fan Iow, whichever is less	Maximum combined total air leakage from supply and return sides of the system. (The real goal is zero air leakage, and 20 cfm ₂₅ is commonly achieved in practice by well- trained crews)		
4,250 Btu/h per 1,000 ft ² of occupied floor space	Cooling load from attic duct work Maximum conductive heat gain from attic duct work per 1,000 ft ² of occupied space (Based on R-8 insulation, 40% of occupied floor space as duct surface, attic temperature of 140°F and supply air temperature of at least 55°F)		
2,500 Btu/h per 1,000 ft ² of occupied floor space	Heating load from attic duct work Maximum conductive heat loss from attic duct work per 1,000 ft ² of occupied space (Based on R-8 insulation, 40% of occupied floor space as duct surface, attic temperature of 40°F and supply air temperature of no more than 90°F)		

140

MY HOM

0

Steps to Optimizing the Duct System

- □ Keep Ducts as short as possible
- □ Use mechanical elbows at every 90-degree turn
- Install a damper in every duct
- Be mindful with your installation of the ducts; don't double back off a wye
- Ducts sit flat on the ceiling rafters with the damper handles facing up
- □ Measure to verify your ducts are not too short
- □ Use mastic on the inside of the duct and slide it over the metal connection
- □ Secure the duct with flexible plastic duct tape or Panduit strap
- Pull insulation from the duct to cover all metal
- Always have the *goal of zero leakage* in mind
- □ Tape all the seams on the air handlers to prevent air leakage

Use This Chart for Sizing the Duct Work

The chart was created by **Rick Chitwood**

These numbers are critical with lower static product

The sizes will seem foreign to you. Notice the 6 x 4 x 6 and the 8 x 6 x 8

EMH Notes

- I use an 8 x 4 x 6 and the 8 x 6 x 8 most all the time. I also use an 8 x 4 x 4 for bathrooms.
 - I did that so there were some standardization
- I get most of the styles I need from StatAir

SUPPLY	SUPPLY AIR DUCT & GRILLE SIZING				
Air flow (cfm)	Duct Diameter	Curved Blade Ceiling Grille ¹	Floor Grille ²	High Sidewall Grille ³	
50	5″	4" x 4"	10" x 2.25"	4" x 4"	
75	6″	6" x 4"	8" x 4"	6″ x 4″	
100	7″	6″ x 6″	10" x 4"	8″ x 4″	
125	7″	6" x 6"	12" x 4"	10" x 4"	
150	8″	8″ x 6″	10" x 6"	8" x 6"	
175	8″	10" x 6"	10" x 6"	10" x 6"	
200	9″	8″ x 8″	12" x 6"	10" x 6"	
250	10″	14" x 6"	12" x 8"	10" x 8"	
300	10"	14" x 8"	14" x 8"	12" x 8"	

1. Typically a commercial-grade extruded aluminum grille

2. Simple bar-type grille (non-diffusing)

3. Typical residential double-deflection type grille

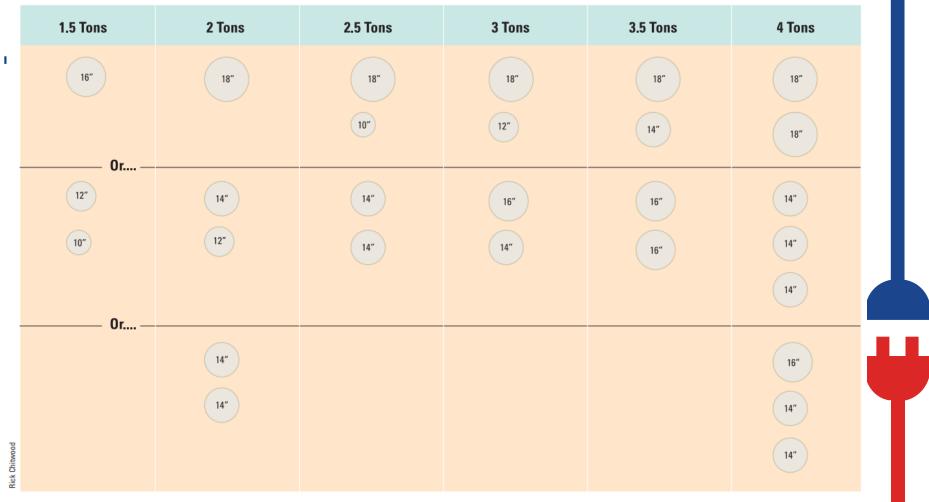


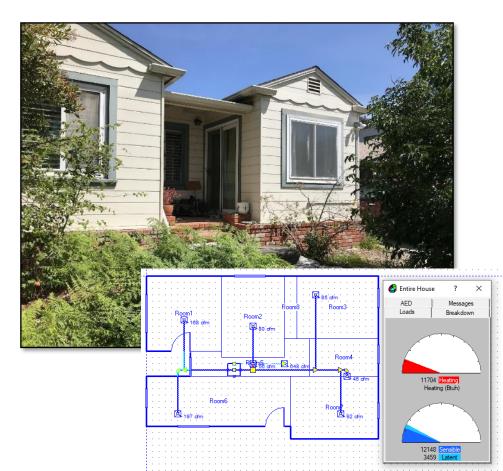
Table 8.5 Check numbers for return air duct sizes

Table 8.4 Check numbers for return air grilles

Quick Break?

REAL WORLD EXAMPLES

Install Small is Possible!


Example #1: Norvell St. [695 sqft/ton]

Client:

- City of Berkeley Sustainability Outreach Specialist
- Competing recommendation 40,000 BTU gas, 24,000 cooling

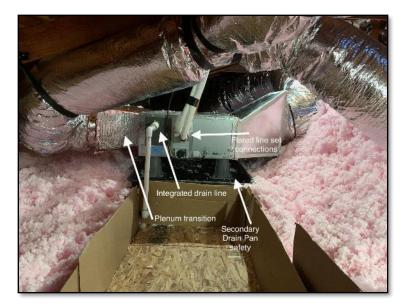
Site conditions:

- Year Built: 1948
- 🕴 Size: 1042 sq ft
- Envelope: Insulation blown in to R44, cellulose (by others)
- Existing System: 60,000 btu 90% efficient gas furnace in the crawl space
- 🕈 🛛 New System: 18,000 BTU

Example #2: Corte Madera [1,111 sqft/ton]

Client:

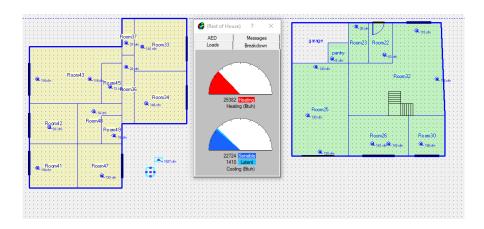
Energy Advocate & Architect


Site conditions:

- Year Built: 1962
- Size: 1,420 sq ft
- Envelope: Attic poorly insulated; nasty crawlspace
- Existing System: 80,000 btu 90% efficient gas furnace
- New System: 18k BTU mid static

Corte Madera Project: Finished Product

- 🕴 18k BTU mid static
- Outdoor unit on rack for rising tide
- Attic insulation installed at R-49 to R-60
- Use cardboard as in insulation dam
- Better heat comfort than furnace
- Had to go back and adjust air flow down

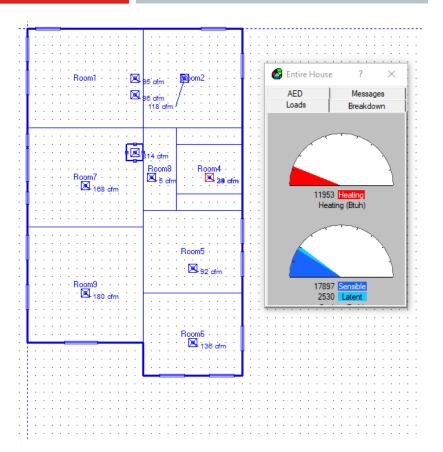

Example #3: Petaluma 2-Story [550 sqft/ton]

Client Situation:

†Tile Contractor

Site conditions:

- Year Built: 1980's
- Size: 2,200 sq ft
- Envelope: Big South-facing Windows
- Existing System: 1x 100,000 BTU gas furnace
- New System: 2x 24,000 BTU mid-static systems


Example #3: Small House in Berkeley [726 sqft/ton]

Client Situation:

Recently purchased remodel

Site conditions:

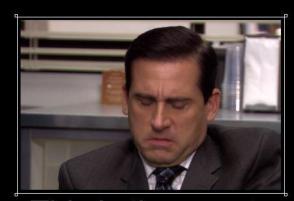
- Year Built: 1920's
- 🕈 Size: 1,089 sq ft
- Envelope: 17k BTUs of cooling Southern Exposure on old windows
- Existing System: 60,000 BTU Gas Furnace
- New System: 18,000 BTU Slim Duct

POOR WORKMANSHIP & DISTRIBUTION

Examples from the field

Gut Check! Gas Furnaces in California, Will you Still Only Offer This Option?

- Your customers are counting on you!
- Will you offer a clean electric solution every time?
- What or who will prevent you?
- Do you have the confidence?
- An advocate for your customer?
- It may require deviating from the path of least resistance!
- Gas bans this will impact you and your customers


Your Duty to Your Customers

The following slides show POOR installation practices:

- Blatant disregard to quality
- Evidence of technicians' lack of knowledge

Keep in mind:

- Poor workmanship skills negatively affect customers
- You should deliver the best system under all conditions
- Taking shortcuts cost your customer thousands in wasted energy
- The customer has trusted you

This is the worst.

i cant look at your face i want to smash it

Memelentera

Ducts are a Main Reason Systems are Oversized

Poorly installed ducts cause high static pressure and reduce capacity

High static pressure

Poorly installed ducts

Hmm...



Duct constricted by two bends leaving plenum

Comments?

Really?

Sloppy HVAC Mechanics Braeden Telstad · 2d · 😪

Hey guys I installed one of those "inverter" units.

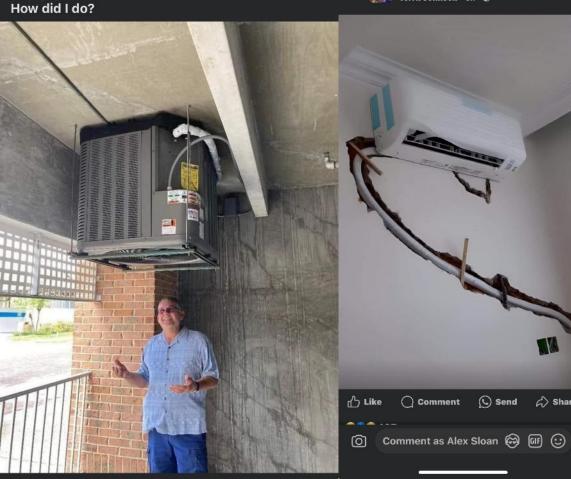
7:55 1

×

 \overleftrightarrow Share

🕓 Send

Sloppy HVAC Mechanics Terril Johnson - 3h - 🔊


Cully Cangelosi · 2nd

+ Follow

Here to solve all of your RoofTop HVAC mounting needs - pitched roof, flat ro... Visit my website 2h • 🕲

The new Super Charged AC System. Call Today to get yours lol

Low R-Value

Bad Planning


Consider Thermal Implications in Your Plan

Looks slick, good intention, but bad result

Extra ductwork surface area robs energy. How could this be better executed?

		1
LENT LENGTHS		EQUIN
1/DUCT FITTINGS		DUCT
Offset starting collar	10' EL	No. 14
Straight starting collar	35' EL	
Snap collar, round	35' EL	
ELBOWS & ANGLES		
90° elbows	30' EL	DUCT
45° angles	10 - 20' EL	No. 16
ER BOOTS		
90° register boot	30' EL	
Straight register boot	5' EL	
End register boot	50' EL	
FITTINGS (TAKEOFFS	5)	RETU
Round starting collar	35' EL	No. 810
Square to round straight	15' EL	
Square to round elbow	40 - 45' EL	
Square to round elbow	40' EL	
Round to round (adjustable)	20 - 25' EL	
Round to round	20 - 25' EL	
	Straight starting collar Snap collar, round ELBOWS & ANGLES 90° elbows 45° angles ER BOOTS 90° register boot Straight register boot End register boot FITTINGS (TAKEOFFS Round starting collar Square to round straight Square to round elbow Square to round elbow Round to round (adjustable)	A/DUCT FITTINGS Offset starting collar 10' EL Straight starting collar 35' EL Snap collar, round 35' EL ELBOWS & ANGLES 90° elbows 90° elbows 30' EL 45° angles 10 - 20' EL ER BOOTS 30' EL 90° register boot 30' EL Straight register boot 50' EL End register boot 50' EL Endregister boot 50' EL FITTINGS (TAKEOFFFS) Round starting collar 35' EL Square to round elbow 40 - 45' EL Square to round elbow 40' EL Round to round (adjustable) 20 - 25' EL

DUCT	ELBOWS, RADIUS TI
No. 14	Up to 11"
	12" to 21"
	22" to 27"
	28" to 33"
DUCT	ELBOWS, SQUARE T
No. 16	Up to 11"
	12" to 15"
	16" to 21"
	22" to 27"
	28" to 33"
RETUR	N AIR SYSTEM
No. 810	Cold air boot, collar, duct

When Running a HP Duct System, Keep in Mind the Equivalent Length

STATIC PRESSURE KILLS PERFORMANCE!

- The fittings you use cause static pressure
- Always use a hard elbow on 90's
- Straight boots are better than PH2 or angled sidewall boots
- Even a start collar has an equivalent length
- It is easy to add equivalent length keep them straight when you can

Registers Matter! STOP using these for everything!

ш		_	_	
ш	Ш		_	
ш			_	11.
Ш		_		

Registers are Really Important

Straight throw from floor and side walls

Curved blade from ceilings single direction!

Be aware of Wood Floor Registers

- Nothing worse for static pressure
- Massive pressure drop can be measured with manometer
- If the customer insists walk away or get them to sign a release form
- Easy to measure 60 to 70% air restriction

Stamp Face Registers/Grilles

- No air stream mixture just adjacent hot spots
- Prevent air mixture stops venturi effect
- Causes hot and cold spots

Insist No Furniture is Placed Over Floor Registers

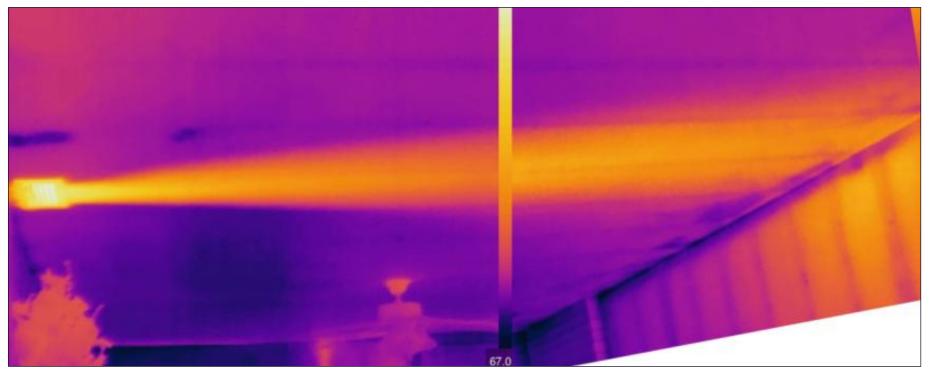
A 2-way register under a shelf will stop the stream and prevent air mixture

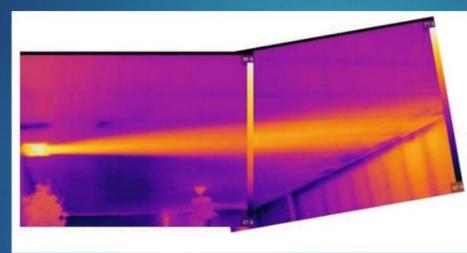
A 2-way register next to a chair creates a hot-spot. A straight stream will prevent this

Longer Runtimes Mix Air Better: Correct Registers are Key

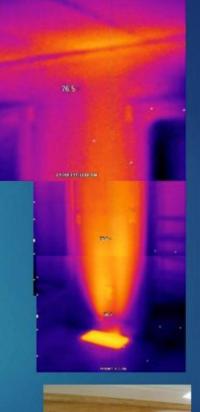
- Air stream mixes by venturi effect
- Directional air flow control
- Three-way registers are almost never the proper register

- When mixing by venturi effect, conceptualize registers as a nozzle
- Ceiling curve blade
- Sidewall high flow



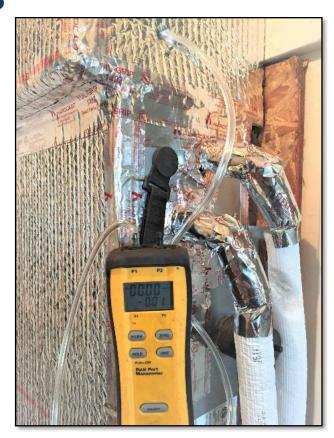


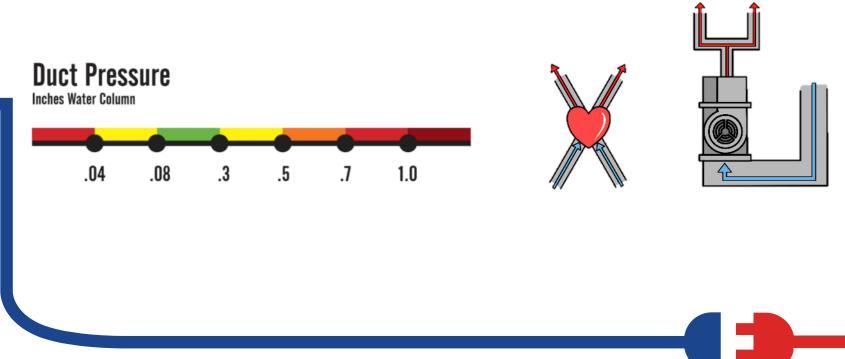
Register Throw Is Important For Air To Reach Other Side Of Room


Can the system mix the room air?

www.balancepointhp.com

530-477-0695




Do You Own a Manometer?

A very important tool – make sure you have one!

Explanation to Customer = Duct Pressure

Source: Nate Adams

Part 1, Quiz 2: "Install Small"

1. "Install Small" refers to:

- A. Using smaller ducts
- B. Using smaller line set
- C. Installing smaller systems
- D. Installing the correct size system

2. Filtration systems can cause static pressure

TRUE FALSE

3. The term equivalent length refers to?

- A. The total number of 25-foot boxes of duct used
- B. The factor to calculate BTU loss
- C. The total length of all line sets
- D. The calculated length of all ductwork installed including fittings

4. Flex duct should be pulled tight in order to:

- A. Save on material cost
- B. Be easier to find when buried under insulation
- C. Reduce static pressure
- D. A and C

5. A good reason to choose an inverter over unitary system.

- A. Smaller footprint
- B. Quieter operation
- C. Install flexibility
- D. Better Comfort
- E. All of the above

6. 3-way registers are the best solution for all applications

TRUE FALSE

7. Heat pumps are more efficient than any gas furnace

TRUE FALSE

Break

THE HOT WATER OPPORTUNITY

- SEGMENT 5 -

The Hot Water Opportunity

- Heat Pump Water Heaters known as ... HPWH
- California banking on energy storage (BIG incentives)
- HPWH present a fast path to reduction in carbon emissions
- Great first Electrification measure
 More efficient than gas
 Far better than regular electric resistance

Energy Program Incentives Coming on Strong: Consumer Facing and Midstream (Contractor)

- Unmatched Energy Efficiency: Efficiencies (COP's) over
 4.0 as compared to 0.62 Average Gas Tank replacement
- Huge rebates available
- Local, SGIP, REN, Tech, and Federal rebates/credits
- Midstream incentives
- Represent a possible 75% reduction in cost to the consumer

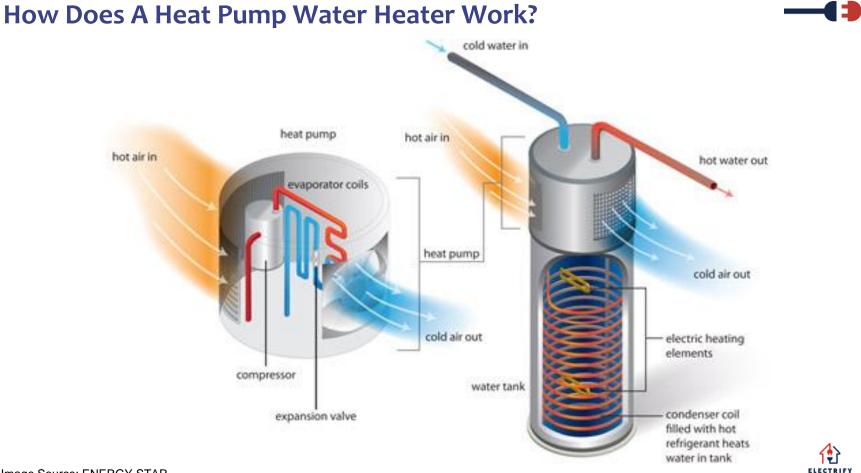
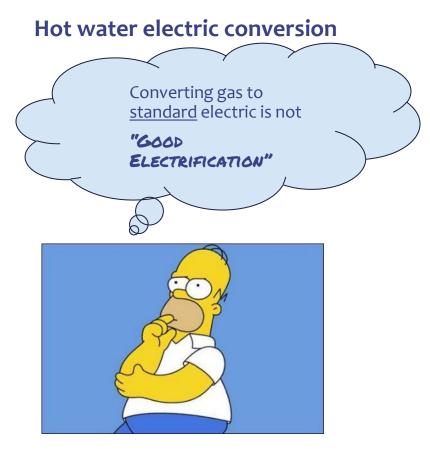



Image Source: ENERGY STAR.

193

The Hot Water Opportunity: Heat Pump Water Heaters

Operational savings can be vary

ELECTRIFY 194

Cost Savings – It Depends

- **# Electric Resistance to HPWH** No Brainer!
- **# Customer has solar –** Great Option
- **# Gas Tank to HPWH** Depends
- **# Tankless to HPWH** Depends
- Recommendation: be careful guaranteeing energy savings. Gas prices likely to rise and gas units not available after 2030. Optimize with right-sizing, proper controls setup, customer education.
- Recommendation: utilize a third-party calculator if customer is demanding a yearly operational cost estimate

SCAN: Free Cost Tool - RMI

Gas Water Heaters Can Kill You!

... Even if they're properly functioning (providing hot water)

NOT UNDERSTANDING HOW THIS WORKS CAN MAKE YOUR CUSTOMER SICK!

Advantages of HPWH's for Installers

- Multifunctional
- Various capacities and voltages
- Solves venting problems
- Higher profit!

Sellable Benefits to Communicate to Your Customers

- \checkmark Small kWh usage for solar offset
- \checkmark A Great, First Electrification-Step
- \checkmark Incentives and Rebates/Offsets
- \checkmark Carbon Footprint Reduction
- \checkmark Load shifting to lower energy post

WON'T KILL THEM!

Alternatives to Traditional Water Heaters?

The Financials

- Great Incentives consumer and dealer
- Only responsible way to replace any electric tank
- Cost of unit is higher, operational cost is mostly lower
- HP only mode OK for most CA climate zones
- Greater profit margin

WHICH ONE DO YOU WANT?

Gas Tank Sale

ltem	Amount
Sales Price	\$2,450
Appliance	\$950
Miscellaneous	\$150
Permits	\$150
Other	\$ 0
Direct Fixed Costs	\$1,250
Labor (5 hrs @ \$95)	\$475
Overhead (@25%)	\$613
Variable Costs	\$1,088
Total Cost	\$2,338
Net Profit \$	\$113
Net Profit %	4.6%

HPWH Sale

ltem	Amount
Sales Price	\$6,850
Appliance	\$1,665
Miscellaneous	\$265
Permits	\$300
Other Electrical	\$1,000
Direct Fixed Costs	\$3,230
Labor (12 hrs @ \$95)	\$1,140
Overhead (@25%)	\$1,713
Variable Costs	\$2,853
Total Cost	\$6,083
Net Profit \$	\$768
Net Profit %	11.2%
TECH Clean CA	(\$3,100)
Federal Tax Credit	(\$1,125)
Net Price for Customer	\$2,625

W/ help of rebates (when avail) even more attractive. With Rising Costs, You Should Revisit Your Pricing Often

- Multiple price increases since 2020
- 50 Gallon models \$1300-\$1800
- 80-gallon models pricing \$2200 -\$2950
- Ancillary materials have risen as much as 50% since Jan 2021

HPWH Sale

ltem	Amount
Sales Price	\$6,850
Appliance	\$1,665
Miscellaneous	\$265
Permits	\$300
Other Electrical	\$1,000
Direct Fixed Costs	\$3,230
Labor (12 hrs @ \$95)	\$1,140
Overhead (@25%)	\$1,713
Variable Costs	\$2,853
Total Cost	\$6,083
Net Profit \$	\$768
Net Profit %	11.2%
TECH Clean CA	(\$3,100)
Federal Tax Credit	(\$1,125)
Net Price for Customer	\$2,625

Cost Savings – It Depends

- **# Electric Resistance to HPWH** No Brainer!
- **# Customer has solar –** Great Option
- **# Gas Tank to HPWH** Depends
- **# Tankless to HPWH** Depends
- Recommendation: be careful guaranteeing energy savings. Gas prices likely to rise and gas units not available after 2030. Optimize with right-sizing, proper controls setup, customer education.
- Recommendation: utilize a third-party calculator if customer is demanding a yearly operational cost estimate

SCAN: Free Cost & Climate Benefits Tool - RMI

THAN TWO 350-WATT SOLAR PANELS

Several Brands Available, 110v/220v, top/side connections, top/side discharge

Split Configuration Helps with Application Challenges

Split system HPWH solves several problems

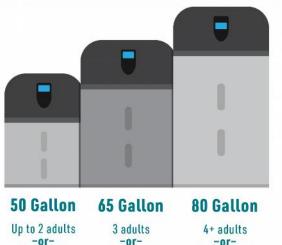
Location

- 🕈 Sound 37 DbA
- ♥ Faster Heat 115 gal (83-gal system) 145°F temp
- Best for environment CO2 = GWP of 1
- 📍 15A breaker
- Works well at low temperatures
- Inverter-based

Disadvantages

- Higher cost [But higher margin!]
- Additional time required
- Outdoor unit must be kept upright and level

Heat Pump Water Heater Sizing Considerations


Calculate the first-hour rating:

- Add the peak demand
- # of showers x20 gallons
- Dish washer x7 gallons
- Clothes washer (top-load 25; front-load 15)
- Match to first hour rating

Appropriate tank size:

- 1-2 people: 50 gallon
- 🕴 2-3 people: 65 gallon
- ♥ 4+ people: 80 gallon

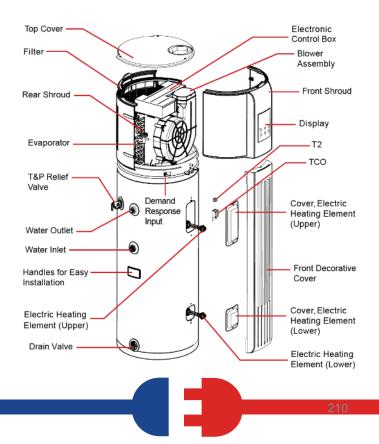
HYBRID ELECTRIC WATER HEATER SIZING GUIDE

1 adult and 1 child -or-2 adults and 3+ children

WHY SIZE UP?

Compared to standard electric tanks, hybrid water heaters rely less on inefficient heating elements to keep up with demand. Upgrade to a hybrid with a larger tank to take advantage of increased efficiency and cost savings.

2 adults and


2 children

нот

WATER

Considerations & Pitfalls of HPWH's

- \checkmark Initial cost is higher
- ✓ Most require a 30-amp circuit
- \checkmark Plumbing is more complicated and cumbersome
- ✓ Could complicate permit process
- \checkmark Takes longer to install
- \checkmark Requires two people for the larger models (300+ lb)
- \checkmark Has a filter that needs servicing

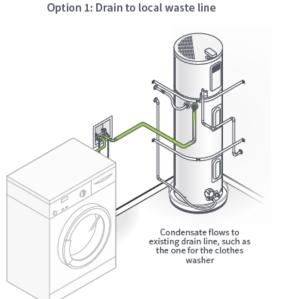
Gas vs Electric vs Heat Pump

Feature	50-gal Gas	50-gal HPWH
Fuel	Gas Line	30A circuit
Uniform Energy Factor	0.63	3.88
BTU Rating	38,000 Btu/h	4,200 Btu/h + 4500W Elements
Recovery Rate*	40	27
First Hour Rating**	86	67
Width x Height (")	20.5" x 58.4"	22.3" x 62"
Weight (Ib)	150	218
Vent	Atmospheric	Optional
Smart Controls?	None	WiFi, Smart Home

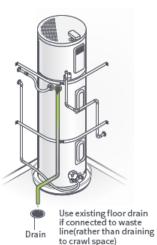
**Recovery Rate @90F: # of gallons of water heated in 1 hour with temp rise of 90F *1st Hr Rating: # of gallons of hot water a fully heated tank can deliver in one hour.

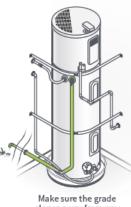
Things to Remember

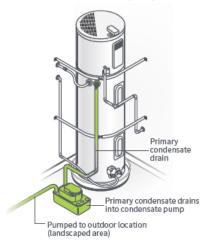
- Take up a more space
- Not suitable for small areas
 - 500-700 cu ft min depending on mfr
 - Venting a possible solution
- Require additional project planning
- HPWH compressor makes noise
- Filter needs occasional cleaning



Pro Tips


- PREMOVE the top cover screw from the back if installing against the wall
 - Keep the pipes out of the way of the filter
- Rotate unit for best airflow with side discharge
- Put on your company stickers before taking any pictures
- Prelocate existing straps so that they don't land around critical areas
- Consider ease of the serviceability during install
- Remember there is a corrosion rod
- 🕈 Consider wraparound plumbing
- Insulate behind the water heater before putting it in
- Make sure you have a good lifting device with you


Condensate Options


Option 2: Drain to floor

Option 3: Drain to landscaping outdoors (if local codes allow)

Make sure the grade slopes away from any structures Option 4: If below ground level, drain to condensate pump

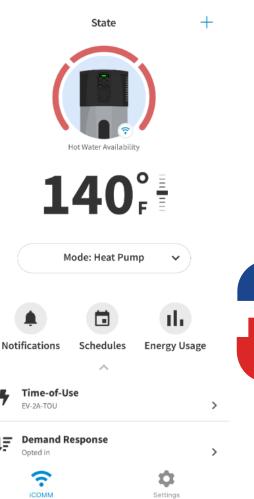
Just Like a Gas Tank, Right? Cheapskate DIY not advised

A. Warm air comes in from E. Electric connection the attic (the duct in back). F. Display and wifi B. Hot water (insulated) leaves from the top of the water holding area. G. Condensation drain line (transparent tubing) C. The heat pump is on top, and the water holding area is below. The water H. Pressure relief line on top gets hot first. D. Cold air leaves through I. Cold water enters at the a small louvre in the closet bottom of the tank. door.

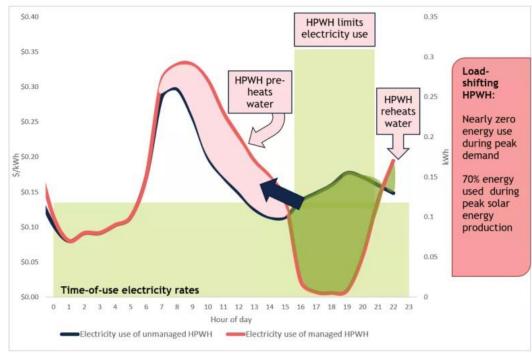
Tip: Don't install near the HVAC t-stat!

Thermostatic Mixing Valve (TMV)

- Mixes hot & cold water to provide more capacity
- Allows you to turn tank temperature up
 - Extends deliverable capacity
- Required for TECH Clean CA, which also requires demand response and time of use enrollment



ΤΞ


.... 😤 🗔

- The goal is to always have the unit run in heat pump mode
- This will lead to longer runtimes this is normal
- Best to leave the settings in most efficient mode unless you experience delivery issues
- Other modes (names change based on unit):
 - Hybrid activates electric resistance backup for guicker recovery (conservative)
 - Felectric exclusively electric resistance. Not recommended unless heat pump isn't working
 - Yacation for periods of vacancy. Use this instead of shutting breaker off since protective anode requires power.

HPWHs = Excellent For Time-Based Utilization

🕈 CTA-2045 Protocol

- Smart communication standard
- Protocol for devices to talk to each other, utility, and DR providers
- Control based on real-time data
- Y Communicate to other devices in home

Citation: NRDC, 2018

Controls: Wi-Fi & Rate Plan

- Technicians should have the app on their phone
- Get customer's WiFi login information first
- Have customers install the app on their phone
- Go through app setup process with the customer
- Each brand is different get specific instructions from that manufacturer

A Great Resource: TECH Clean CA Contractor Hub

Bradford White Connect™ 177+ Smart Water Heater Control Bradford White Designed for iPhone Free

Ruud EcoNet I + For Homeowners: Smart AC & H2O Rheem Manufacturing Company

**** ± 4 • 653 Ratings

State Water Heaters 4+ State Industries, Inc Designed for iPad

**** * 2.2 • 19 Ratings

Free

Free

- Discuss customer's water habits and patterns
- Programming of unit (Wi-Fi/App, rate plan, HP/Hybrid/Electric/Vacation)
 - HP only (lowest op cost), Hybrid (quicker recovery)
 - If mechanical issues, switch to Elec Only
- Filter instructions
- Temperature settings
- Various sound profiles
- 🕈 Run time before first water use
- Be mindful of hot water operation for first few days

What About Electric Tankless?

- Not practical (whole home)
- Huge capacity penalty
- Non-Compliant for retrofit

- Buyer Beware
- Luke-warm showers = upset spouse

Existing electric resistance – not much to worry about; utilizing existing wire most of the time

🕈 Gas

- Removal of old flue. Capping of vent recommended. If leaving in place, always get customer buy-in
- Capping gas line. Best practice to cut line as far back as possible. If leaving longer gas pipe runs in place, make sure to get customer buy-in and ensure safety.

Bonus & Transition: Is This How You Sell?

Part 1, Quiz 3: Quiz time! Heat Pump Water Heaters

1) A Heat Pump Water Heater requires how much free open space?

- A. 600 sqft
- B. 700 cu ft
- C. 500 ln ft
- D. Depends on manufacturer and venting scenario

2) A home with 4 occupants & 4 bathrooms needs what size HPWH?

- A. 65
- B. 50
- C. 80
- D. 65-80
- 3) Most heat pump water heaters require a 30 amp circuit.

TRUE FALSE

4) A heat pump water heater is a good choice to solve venting problems.

TRUE FALSE 5) According to the energy guides, a heat pump water heater costs more to operate than gas.

TRUE FALSE

6) SanCO₂ water heaters use a different refrigerant that is more earth friendly.

TRUE FALSE

7) One factor of "Good Electrification" is considering all the needs for complete electric conversion upfront.

TRUE FALSE

8) A traditional heat pump can use up to six breaker spaces.

TRUE FALSE

9) Complete electrification could use up to 12 breaker spaces.

224

ELECTRIFY

TRUE FALSE

Questions?

Turn it on. Relax. We've got you covered.

Larry Waters

401 Railroad Ave Suisun City, CA 94585

707-840-3411 www.electrifymyhome.com larry.waters@electrifymyhome.com <u>info@electrifymyhome.com</u>

